
A theorist takes a look at LLMs

Dean Foster, Amazon

November 5, 2024

What I won’t tell you about today

What I’ve been doing for the past 2 years:
Engineering: building LLMs
Alignment: defending LLMs ([1])
Optimization: picking the batch size ([2])
Applications: tutoring children ([3], [4])
Theory: ?

Today, I’ll tell you mostly about my theory work

What can theory or even science tell us about
LLMs?

Theory? What is it good for?

to quote Edwin Star (or mis-attribute to James
Brown):

Absolutely Nothing!

What can theory or even science tell us about
LLMs?

Theory? What is it good for?

to quote Edwin Star (or mis-attribute to James
Brown):

Absolutely Nothing!

What can theory or even science tell us about
LLMs?

Theory? What is it good for?

to quote Edwin Star (or mis-attribute to James
Brown):

Absolutely Nothing!

What can theory add?

Examples of cool theory:
1 Chain of though can learn a Turing machine (Malach 2023)
2 what LLMs can learn (“leap complexity” 2023)
3 saddle point escape
4 Many papers on two layer network theory as tensors
5 Many theory paper on the first step of SGD / Adam
6 µP (asymptotics: “Tensors” 2020-23)
7 Matyroshka (principal of marginality: Kakade 2023)

But only 6 and 7 offer practical advice.

``SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics''
https://arxiv.org/abs/2203.03466

What can theory add?

Examples of cool theory:
1 Chain of though can learn a Turing machine (Malach 2023)
2 what LLMs can learn (“leap complexity” 2023)
3 saddle point escape
4 Many papers on two layer network theory as tensors
5 Many theory paper on the first step of SGD / Adam
6 µP (asymptotics: “Tensors” 2020-23)
7 Matyroshka (principal of marginality: Kakade 2023)

But only 6 and 7 offer practical advice.

``SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics''
https://arxiv.org/abs/2203.03466

This talk: useful TCS for LLMs

I’ll present 3 short ideas with implications for real NNs. The
theory will be stolen from:

1 Computation complexity
2 cryptography
3 statistics

Idea #1:

Computational complexity

Some current NN computability theorems

Theorem (Daniel Hsu 2023)
An transformer LLM can answer the “two sum” problem, but to
answer a “three sum” requires it to be extremely wide. (arxiv)

email:daniel hsu, personal communications

Some current NN computability theorems

Theorem (Merrill and Sabharwal 2023)
An LLM can only answer questions in TC(0) if asked directly for
the answer. (arxiv)

https://arxiv.org/pdf/2207.00729.pdf

Some current NN computability theorems

Theorem (Malach 2023)
A linear LLM can be trained to mimic a Turing machine using
chain-of-thought.

Some current NN computability theorems

Theorem (Giannou, Rajput, Sohn, Lee, Lee, and Papailiopoulos
2023)
Looped Transformers are general computers.

Chain of thought

Is
√

2π
?
> e?

Chain of thought

Is
√

2π
?
> e?

Asking directly forces the LLM to guess.

Chain of thought

Is
√

2π
?
> e?

Asking, “Think step-by-step and work out...”
Higher accuracy

Chain of thought

Is
√

2π
?
> e?

Asking, “Take a deep breath and work out...” (Sept 2023)
Even higher accuracy

https://arxiv.org/pdf/2309.03409.pdf

Contrasting native LLMs vs Chain of Thought

Theorem (Merrill and Sabharwal 2023)
(rephrased) An LLM can not answer questions in PSPACE.

Theorem (F. and Madeka 2023)
Using chain of thought reasoning, an LLM can solve any
problem in PSPACE.

A long roll out is where the new power comes from.

Contrasting native LLMs vs Chain of Thought

Theorem (Merrill and Sabharwal 2023)
(rephrased) An LLM can not answer questions in PSPACE.

Theorem (F. and Madeka 2023)
Using chain of thought reasoning, an LLM can solve any
problem in PSPACE.

A long roll out is where the new power comes from.

Contrasting native LLMs vs Chain of Thought

Theorem (Merrill and Sabharwal 2023)
(rephrased) An LLM can not answer questions in PSPACE.

Theorem (F. and Madeka 2023)
Using chain of thought reasoning, an LLM can solve any
problem in PSPACE.

A long roll out is where the new power comes from.

50 0 50 100 150 200 250
Difference in Length

1

2

3

4

C
ou

nt

Take a Deep Breath is LongerStep by Step is Longer

Prompting Bard

Implication #1:

Use tiers of NN

Hardware:
Compute: 1000s of GPUs
instances
Communication: TBytes/s

MEMS

https://www.diconfiberoptics.com/products/mems_matrix_optical_switches.php

Tiered model

Bottom tier:
training: usual transformer model
Generates “roll outs”

Middle tiers:
training: Using history and roll-out,
predict next word
generates new roll outs

Top tier:
Training: Reads all roll outs and history
then predictions the next word
inference: Generate all roll outs and
then generate next word

Tiered model

Bottom tier:
training: usual transformer model
Generates “roll outs”

Middle tiers:
training: Using history and roll-out,
predict next word
generates new roll outs

Top tier:
Training: Reads all roll outs and history
then predictions the next word
inference: Generate all roll outs and
then generate next word

Tiered model

Bottom tier:
training: usual transformer model
Generates “roll outs”

Middle tiers:
training: Using history and roll-out,
predict next word
generates new roll outs

Top tier:
Training: Reads all roll outs and history
then predictions the next word
inference: Generate all roll outs and
then generate next word

Alternative implementation

To reify our theorem, you need to build an interpreter into the
LLM.

This means training it on doing step-by-step thinking
If you are going to externalize some thinking, it should be
trained on that also
For example, using Lean as a proof assistant:

. . .text {Lean code}{Lean output} text. . .

This should be part of the training data

Alternative implementation

To reify our theorem, you need to build an interpreter into the
LLM.

This means training it on doing step-by-step thinking
If you are going to externalize some thinking, it should be
trained on that also
For example, using Lean as a proof assistant:

. . .text {Lean code}{Lean output} text. . .

This should be part of the training data

Idea #2:

One way functions

One way functions

A one way function is one where f (x) is easy to compute, but
f−1(y) is hard to compute.
Examples:

Cryptography
pseudo random number generators
block chain

Causal mask

We process words L2R in a transformer based LLM.
Not as obvious as in an auto-regressive LLM (e.g. LSTM)
Still, all values are “time stamped”

Every node in a transformer has a time stamp
It only depends on tokens that came before that time stamp
represented by the causal triangle matrix

Simple L2R doesn’t mean simple R2L

Example (L2R is easy, R2L is hard)
There is a function of T tokens that can be computed L2R in
one pass each step of degree 2 such that when it is computed
R2L in one pass it requires degree 2T .

Simple L2R doesn’t mean simple R2L

Example (L2R is easy, R2L is hard)
There is a function of T tokens that can be computed L2R in
one pass each step of degree 2 such that when it is computed
R2L in one pass it requires degree 2T .

How to beat the counter-example:
copy all data to the last token T
Now mimic the L2R

Simple L2R doesn’t mean simple R2L

Example (L2R is easy, R2L is hard)
There is a function of T tokens that can be computed L2R in
one pass each step of degree 2 such that when it is computed
R2L in one pass it requires degree 2T .

Theorem
Any function of T tokens which can be simply computed L2R in
L layers and embedding dimension d can be simply computed
R2L in L + 1 layers and an embedding dimension of Td.

Simple L2R doesn’t mean simple R2L

Example (L2R is easy, R2L is hard)
There is a function of T tokens that can be computed L2R in
one pass each step of degree 2 such that when it is computed
R2L in one pass it requires degree 2T .

Theorem
Any function of T tokens which can be simply computed L2R in
L layers and embedding dimension d can be simply computed
R2L in L + 1 layers and an embedding dimension of Td.

Requires a huge embedding space

Implication #2:

a causal mask enlarges embeddings

Removing some of the causal mask

Divide our micro-batch into two pieces:
non-causal, non-predicted recent history (R)
causal sequence of predicted tokens (C)
Details:

the full micro-batch is:

[R1,R2, . . . ,Rr ,C1,C2, . . .CT]

RL+1
i can depend on RL

j for all pairs i and j .
CL+1

i can only depend on CL
j for j ≤ i , and on any RL

k

Empirical results (on tiny models)

Comparing a full causal model to a model divided into [R,C],
running with the same compute and same number of
parameters:

causal: entropy = 3.4 nats/token
[R,C]: entropy = 3.3 nats/token

Implications for state space models

Some researchers like state space models
Token→ hidden state→ next token

(Token × hidden state)→ hidden state→ next
Use a conditional random field to model the context

Looks like a state space model
But information flows in both direction

Implications for state space models

Some researchers like state space models
Token→ hidden state→ next token
(Token × hidden state)→ hidden state→ next

Use a conditional random field to model the context
Looks like a state space model
But information flows in both direction

Implications for state space models

Some researchers like state space models
Token→ hidden state→ next token
(Token × hidden state)→ hidden state→ next
Use a conditional random field to model the context

Looks like a state space model
But information flows in both direction

Idea #3:

Statistical vs computational batches

LLM find patterns

L(random guessing) = 15 = log2(60,000)
L(unigrams word frequency) = 11.7 = log2(3300)

L(bigrams (aka Markov)) = 8.8 = log2(500)
L(gzip (LZ compression)) = 8.2 = log2(300)

L(small LLM) = 7.5 = log2(200)
L(Humans)) ≈ 4

L(LLM) = 3.6 = log2(12)

(All in bits per token. I did the small LLM. Shannon, Cover/King
did the human subjects estimation.)

Statistics independence

Palm masked out the first 10% of their tokens in every batch.
Worked with a batch of 2000 tokens
Y1, . . . ,Yt−1 used to predict Yt

But only for t = 201,202, . . . ,2000
First 200 tokens not predicted in this batch

Statistics independence

Our recent / causal model:
has 512 tokens in R
has 512 tokens in C
So only half of the microbatch is predicted

Implication #3:

Statistical length 6= window length

Use overlapping batches

L = batch size
s = “stride” (the number of predictions made)

Traditional batches:

batch 1 = [1,L]
batch 2 = [L + 1,L + L]
batch 3 = [2L + 1,2L + L]
batch 4 = [3L + 1,3L + L]

...
...

...
batch i = [iL + 1, iL + L]

Use overlapping batches

L = batch size
s = “stride” (the number of predictions made)

Statistical batches:

batch 1 = [1,L]
batch 2 = [s + 1, s + L]
batch 3 = [2s + 1,2s + L]
batch 4 = [3s + 1,3s + L]

...
...

...
batch i = [is + 1, is + L]

Our [R,L] network

which beat the standard transformer,
consumed half as much data.

Summary

We presented:
1 complexity of chain of thought
2 one way functions
3 degrees of freedom

Which implied we should:
use tiered NNs (roll-outs)
limit causal masks ([R,C] network)
distinguish statistical stride from window length

THANKS!

Summary

We presented:
1 complexity of chain of thought
2 one way functions
3 degrees of freedom

Which implied we should:
use tiered NNs (roll-outs)
limit causal masks ([R,C] network)
distinguish statistical stride from window length

THANKS!

THANKS!

