A theorist takes a look at LLMs

Dean Foster, Amazon

November 5, 2024

What I won't tell you about today

• What I've been doing for the past 2 years:

- Engineering: building LLMs
- Alignment: defending LLMs [\(\[1\]\)](#page-0-0)
- Optimization: picking the batch size $([2])$
- Applications: tutoring children [\(\[3\],](#page-0-0) $[4]$)
- Theory: ?

Today, I'll tell you mostly about my theory work

What can theory or even science tell us about $LLMs$?

Theory? What is it good for?

What can theory or even science tell us about $11Ms$?

Theory? What is it good for?

to quote Edwin Star (or mis-attribute to James Brown):

What can theory or even science tell us about $11Ms$?

Theory? What is it good for?

to quote Edwin Star (or mis-attribute to James Brown):

Absolutely Nothing!

Examples of cool theory:

- ¹ Chain of though can learn a Turing machine [\(Malach 2023\)](#page-0-0)
- 2 what LLMs can learn [\("leap complexity" 2023\)](``SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics)
- ³ saddle point escape
- ⁴ Many papers on two layer network theory as tensors
- ⁵ Many theory paper on the first step of SGD / Adam
- \bullet μ P (asymptotics: ["Tensors" 2020-23\)](https://arxiv.org/abs/2203.03466)
- ⁷ Matyroshka (principal of marginality: [Kakade 2023](#page-0-0))

Examples of cool theory:

- ¹ Chain of though can learn a Turing machine [\(Malach 2023\)](#page-0-0)
- 2 what LLMs can learn [\("leap complexity" 2023\)](``SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics)
- ³ saddle point escape
- ⁴ Many papers on two layer network theory as tensors
- **6** Many theory paper on the first step of SGD / Adam
- \bullet μ P (asymptotics: ["Tensors" 2020-23\)](https://arxiv.org/abs/2203.03466)
- ⁷ Matyroshka (principal of marginality: [Kakade 2023](#page-0-0))

But only [6](#page-5-0) and [7](#page-5-1) offer practical advice.

I'll present 3 short ideas with implications for real NNs. The theory will be stolen from:

- **1** Computation complexity
- 2 cryptography
- ³ statistics

Idea #1:

Computational complexity

Theorem (Daniel Hsu 2023)

An transformer LLM can answer the "two sum" problem, but to answer a "three sum" requires it to be extremely wide. [\(arxiv\)](email:daniel hsu, personal communications)

Theorem (Merrill and Sabharwal 2023)

An LLM can only answer questions in TC(0) if asked directly for the answer. ([arxiv\)](https://arxiv.org/pdf/2207.00729.pdf)

Theorem (Malach 2023)

A linear LLM can be trained to mimic a Turing machine using chain-of-thought.

Theorem (Giannou, Rajput, Sohn, Lee, Lee, and Papailiopoulos 2023)

Looped Transformers are general computers.

Is $\sqrt{2\pi}$? > *e*?

Is $\sqrt{2\pi}$? > *e*?

• Asking directly forces the LLM to guess.

Is $\sqrt{2\pi}$? > *e*?

- Asking, "Think step-by-step and work out..."
- Higher accuracy

Is $\sqrt{2\pi}$? > *e*?

- Asking, "Take a deep breath and work out..." [\(Sept 2023\)](https://arxiv.org/pdf/2309.03409.pdf)
- Even higher accuracy

Contrasting native LLMs vs Chain of Thought

Theorem (Merrill and Sabharwal 2023)

(rephrased) An LLM can not answer questions in PSPACE.

Contrasting native LLMs vs Chain of Thought

Theorem (Merrill and Sabharwal 2023)

(rephrased) An LLM can not answer questions in PSPACE.

Theorem (F. and Madeka 2023)

Using chain of thought reasoning, an LLM can solve any problem in PSPACE.

Contrasting native LLMs vs Chain of Thought

Theorem (Merrill and Sabharwal 2023)

(rephrased) An LLM can not answer questions in PSPACE.

Theorem (F. and Madeka 2023)

Using chain of thought reasoning, an LLM can solve any problem in PSPACE.

A long roll out is where the new power comes from.

Implication #1:

Use tiers of NN

Hardware:

Compute: 1000s of GPUs instances

Communication: TBytes/s

Tiered model

- **•** Bottom tier:
	- training: usual transformer model
	- Generates "roll outs"

Tiered model

- Bottom tier:
	- training: usual transformer model
	- Generates "roll outs"
- Middle tiers:
	- training: Using history and roll-out, predict next word
	- generates new roll outs

Tiered model

- **•** Bottom tier:
	- training: usual transformer model
	- Generates "roll outs"
- **Middle tiers:**
	- training: Using history and roll-out, predict next word
	- generates new roll outs
- Top tier:
	- Training: Reads all roll outs and history then predictions the next word
	- **·** inference: Generate all roll outs and then generate next word

Alternative implementation

To reify our theorem, you need to build an interpreter into the LLM.

Alternative implementation

To reify our theorem, you need to build an interpreter into the LLM.

- This means training it on doing step-by-step thinking
- If you are going to externalize some thinking, it should be trained on that also
- For example, using *Lean* as a proof assistant:

```
...text {Lean code}{Lean output} text...
```
• This should be part of the training data

Idea #2:

One way functions

A one way function is one where *f*(*x*) is easy to compute, but $f^{-1}(y)$ is hard to compute. Examples:

- **•** Cryptography
- pseudo random number generators
- **o** block chain

We process words L2R in a transformer based LLM.

- Not as obvious as in an auto-regressive LLM (e.g. LSTM)
- Still, all values are "time stamped"
	- Every node in a transformer has a time stamp
	- It only depends on tokens that came before that time stamp
	- represented by the causal triangle matrix

There is a function of *T* tokens that can be computed L2R in one pass each step of degree 2 such that when it is computed R2L in one pass it requires degree 2*^T* .

There is a function of *T* tokens that can be computed L2R in one pass each step of degree 2 such that when it is computed R2L in one pass it requires degree 2*^T* .

How to beat the counter-example:

- copy all data to the last token *T*
- Now mimic the L2R

There is a function of *T* tokens that can be computed L2R in one pass each step of degree 2 such that when it is computed R2L in one pass it requires degree 2*^T* .

Theorem

Any function of T tokens which can be simply computed L2R in L layers and embedding dimension d can be simply computed R2L in L + 1 *layers and an embedding dimension of Td.*

There is a function of *T* tokens that can be computed L2R in one pass each step of degree 2 such that when it is computed R2L in one pass it requires degree 2*^T* .

Theorem

Any function of T tokens which can be simply computed L2R in L layers and embedding dimension d can be simply computed R2L in L + 1 *layers and an embedding dimension of Td.*

Requires a huge embedding space

Implication #2:

a causal mask enlarges embeddings

Divide our micro-batch into two pieces:

- non-causal, non-predicted *recent* history (*R*)
- *causal* sequence of predicted tokens (*C*)
- **o** Details:
	- the full micro-batch is:

$$
[R_1,R_2,\ldots,R_r,C_1,C_2,\ldots C_T]
$$

- R_i^{L+1} can depend on R_j^L for all pairs *i* and *j*.
- C_i^{L+1} can only depend on C_j^L for $j \leq i$, and on any R_k^L

Comparing a full causal model to a model divided into [*R*, *C*], running with the same compute and same number of parameters:

- causal: entropy = 3.4 nats/token
- \bullet [*R*, *C*]: entropy = 3.3 nats/token
- Some researchers like state space models
- \bullet Token \rightarrow hidden state \rightarrow next token
- Some researchers like state space models
- Token \rightarrow hidden state \rightarrow next token
- (Token \times hidden state) \rightarrow hidden state \rightarrow next
- Some researchers like state space models
- \bullet Token \rightarrow hidden state \rightarrow next token
- (Token \times hidden state) \rightarrow hidden state \rightarrow next
- Use a conditional random field to model the context
	- Looks like a state space model
	- But information flows in both direction \bullet

Idea #3:

Statistical vs computational batches

LLM find patterns

 L (random guessing) = $15 = \log_2(60,000)$ L (unigrams word frequency) $= 11.7 = log₂(3300)$ $L(bigrams (aka Markov)) = 8.8 = log₂(500)$ $L(gzip (LZ compression)) = 8.2 = log₂(300)$ $L(s$ mall LLM $) = 7.5 = log₂(200)$ \overline{L} (Humans)) \approx 4 $L(LLM) = 3.6 = log₂(12)$

(All in bits per token. I did the small LLM. Shannon, Cover/King did the human subjects estimation.)

Palm masked out the first 10% of their tokens in every batch.

- Worked with a batch of 2000 tokens
- *Y*1, . . . , *Yt*−¹ used to predict *Y^t*
- But only for $t = 201, 202, \ldots, 2000$
- First 200 tokens not predicted in this batch

Our recent / causal model:

- has 512 tokens in *R*
- has 512 tokens in *C*
- So only half of the microbatch is predicted

Implication #3:

Statistical length \neq window length

Use overlapping batches

 $L =$ batch size

• $s =$ "stride" (the number of predictions made) Traditional batches:

Use overlapping batches

 $L =$ batch size

• $s =$ "stride" (the number of predictions made) Statistical batches:

Our [*R*, *L*] network which beat the standard transformer, consumed half as much data.

We presented:

- **1** complexity of chain of thought
- ² one way functions
- ³ degrees of freedom
- Which implied we should:
	- use tiered NNs (roll-outs)
	- **•** limit causal masks ([*R*, *C*] network)
	- **•** distinguish statistical stride from window length

We presented:

- **1** complexity of chain of thought
- ² one way functions
- ³ degrees of freedom
- Which implied we should:
	- use tiered NNs (roll-outs)
	- **•** limit causal masks ([*R*, *C*] network)
	- **•** distinguish statistical stride from window length

THANKS!

THANKS!

