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This is a talk about some other people’s paper

“Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix
decompositions”

@ by Halko, Martinsson, and Tropp.
@ It is my current favorite paper.
@ Today, I'll be applying it to a linear regression.
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Basic method

problem Find a low rank approximation to a n x m matrix M.
solution Find a n x k matrix A such that M ~ AA™M

Construction A is constructed by:
@ create a random m x k matrix Q (iid normals)
@ compute MQ

© Compute thin SVD of result: UDVT = MQ
Q A=U



FAST MATRIX REGRESSIONS
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Using random methods for regression

Toy problem: p <« n:
@ Solving least squares: (a la Mahoney)

o Generates provably accurate results.
e Instead of np? time, it runs in np time.
e This is fast! (l.e. as fast as reading the data.)

@ But we should be unimpressed.

@ Alternative fast (but stupid) method:
e Do least squares on a sub-sample of size n/p
e Runs in time np.
@ Same accuracy as the fast methods.
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A better fast regression

@ Create “sub-sample” X = AAT X and estimate

B=X"X) X"y

@ (Mahoney also subsampled Y and hence lost accuracy.)
@ New method is fast and accurate (NIPS 2013a)

@ What about p > n?
@ Sub-sample columns almost works
e Fast matrix approximation fixes the “almost” (NIPS 2013b)
o Aside: yields fast ridge regression also (JMLR 2013)
@ What about p =~ n?
e needs stochastic gradient also. (UAI 2014)



Applications of fast matrix methods:

@ Least squares regression (we just finished).
© Sparse Linear Regression (today’s talk).

© Fast CCAs.

O Fast HMMs.

@ Fast parsing.

© Fast clustering.



Problem statement: LO regression

@ Problem:
Y=X3+0cZ

using prediction risk £|X5 — X3/3.
@ Target risk is go? for the correct set of g variables.
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Risk Inflation

Theorem (Foster and George, 1994)

For any erthegenal X matrix, using a penality of 2log(p) yields
a risk that is within a 4 log(p) factor of the target.

@ This bound is also tight: I.e. there are design matrices for
which any estimator does this badly.

@ Lasso’s risk inflation is infinite for bad X’s



Machine learning = Statistics + computation

@ Naive algorithm takes 2P time

@ Greedy runs fast (takes np? time)
@ Called stepwise regression

@ How well does it perform?



A success for stepwise regression

Theorem (Natarajan 1995)

Stepwise regression will have a prediction accuracy of at most
twice optimal using at most ~ 18| X*|3q variables.




A success for stepwise regression

Theorem (Natarajan 1995)

Stepwise regression will have a prediction accuracy of at most
twice optimal using at most ~ 18| X*|3q variables.

@ The |X |, is @ measure of co-linearity.
@ The risk inflation is a disaster.

@ Suggests three goals:
@ sparse answers
e accuracy
e speed



LO regression is hard

Theorem (Zhang, Wainwright, Jordan 2014)

There exists an design matrix X such that no polynomial time
algorithm which outputs q variables achieves a risk better than

2(X) a2qlog(p).

Where ~ is the RE, a measure of co-linearity.
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@ Actual statement is much more complex and involves a
version of the assumption that P # NP.



LO regression is hard

Theorem (Zhang, Wainwright, Jordan 2014)

There exists an design matrix X such that no polynomial time
algorithm which outputs q variables achieves a risk better than

Where ~ is the RE, a measure of co-linearity.

@ Note: No cheating on the dimension.
@ What if we let it use 2qg variables? Could we get good risk?



LO regression is VERY hard

Theorem (Foster, Karloff, Thaler 2014)

No algorithm exists which achieves all three of the following
goals:

@ Runs efficiently (i.e. in polynomial time)
@ Runs accurately (i.e. risk inflation < p)
@ Returns sparse answer (i.e. |3|o < p)




What to do?

@ Hard problems exist
@ So, assume the world is nice and we can get

@ a small model
e with accurate prediction
o that runs fast

@ Called alpha investing



VIF regression

@ Basic method: Stream over the features, trying them in
order
@ Even more gready than stepwise regression (2006)

@ Instead of orthogonalizing each new X, only approximately
orthogonalize it. (2011)
e Can be done via sampling
e Can be done use fast matrix methods



VIF regression

@ Basic method: Stream over the features, trying them in
order

@ Even more gready than stepwise regression (2006)
@ Instead of orthogonalizing each new X, only approximately
orthogonalize it. (2011)
e Can be done via sampling
e Can be done use fast matrix methods
@ Nice statistical properties:

e For sub-modular problems, this will generate almost as
good an estimator as best subsets. (2013)
e provides mFDR protection (2008)



VIF speed comparison
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Conclusions

@ These new fast matrix methods are easy to prove
theorems about.

@ They generate statistically useful results.
@ So, read Halko, Martinsson, and Tropp!
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Thanks!



