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Mental models

Three ways of thinking about data:
Probabilistic modelling
Individual sequences
Information theory



Information theory aside

Key concept: Good models compress the data well.
Key idea: Describing the model and describing the data
can both be done using bits and bytes
Describing the model:

Hypothesis test: takes 1 bit to describe the model (point
alternative)
θ ∈ [−M,M] takes log2(2M/

√
n) bits

Non-parametric takes creativity to describe the model
Describing the data:

Use log2(P(Y1, . . . ,Yn|θ)) bits for discrete distributions
Use log2(f (Y1, . . . ,Yn|θ)) bits for continuous densities

Best method is shortest total for model plus data



The wins of each

Information theory:
Beating LZ is hard!
Forces you to think about wild alternatives

Individual sequences:
Think about algorithms
Allows you to ignore the question “Do you believe this
model?”

Probabilistic models:
Source of inspiration for codes and algorithms!
minimax lower bounds
Two sample t-test alone is enough to justify studing models
Interpretability, Explainablity, partial slopes, etc



Costs of each

Information theory:
A trap for the unwary–it pretends to solve all problems
bit and bytes don’t really matter, predictions do!
(story: Getting sucked down the Kolmogorov complexity
well)

Individual sequence:
The space of algorithms is huge: most are impossible to
analyze
Hard to tell what “beliefs” are implied by a algorithm
(story: What no interaction term?)

Probabilistic modelling:
An optimal answer for a model will not be robust
Sometimes the world is ugly

No model captures it well.
Continuing adding bells and whistles takes time away from
looking at data.

(story: Geographic modeling of demand)
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Which is the best?

Ignore everything and run a Neural Net?
Know at least a little of each one
Translate the solution of your problem from one view to
another

If it doesn’t make sense–re-think your solution!
Ideally, it should make sense in all three views

But, nothing beats simply looking at your data
Outliers are a problem in all three
Influential points cause problems everywhere
Looking at data cures believing something completely false!
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Ignore everything and run a Neural Net?
Know at least a little of each one
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Chalk talk: Blackwell approachability

August 24, 2022

Quick introduction to Blackwell approachability
Original paper is unreadable
My 1999 version is unreadable
But the idea is simple
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Stepwise regression gets “no respect”

Quite commonly used, but not often studied
Most statisticians think of it as “evil” or at best useful only
to “lazy” scientists

But I’m a fan
This talk will review some of the theoretical results that are
known about it
I’ll give some examples of its value in applied problems
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Problem statement: As a scientist

Goal: predict Y
Inputs: you have millions of X ’s that can be used to predict
Y
Most X ’s are garbage
How do you find a small subset of X ’s that will predict Y
well?



Problem statement: example

20 years ago Bob Stine and I ran a “little” regression (JASA
2004)

70,000 features
2 million rows
Y = credit card holder going bankrupt next month

At the time it caused jaws to drop
Tricks:

Linear model instead of logistic regression (Fast!)
Dummy variables for interactions (contain signal)
Interactions (non-linear structure)
Bennett’s bound to calculate p-values (avoiding over-fitting)
Stepwise regression!
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Problem statement: As a mathematician

Model:
Yi ∼ X>

i β + σZi

Penalized regression:

β̂Π ≡ arg min
β̂

n∑
i=1

(Yi − X>
i β̂)2 + Πσ2|β̂|0

|β̂|0 is the number of non-zeros in β

Non-convex problem
Note: L1 is the convex relaxation of L0, which leads to
Lasso.
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Why we care

Error larger by p/q if we don’t do variable selection
Huge improvement in accuracy is possible
Precisely:

E(µY |X − Ŷp)2 =
p
q

E(µY |X − Ŷq)2

Ŷp is best fit using all the variables
Ŷq is best fit using only the q correct variables

But, can we find the right subset?



First algorithm

Try all subsets to find best fitting subset
Oops: Slow, and it will say use all the variables



Second algorithm

Try all subsets and penalize by Bonferroni
|t | >

√
2 log(p)

Yes, it is painfully slow. But does it at least find the right
subset?



Risk Inflation

Theorem (F. and George 1994, Donoho and Johnstone 1994)

For any orthogonal X matrix, if Π = 2 log(p), then the risk of β̂Π

is within a 2 log(p) factor of the target.
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Risk Inflation

Theorem (F. and George 1994, Donoho and Johnstone 1994)

For any orthogonal X matrix, if Π = 2 log(p), then the risk of β̂Π

is within a 4 log(p) factor of the target.

So finding the right subset of variables can generate a
huge win



Why L0 instead of L1?
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Greedy = Stepwise regression

instead of exhaustive search, we can use search
Greedy runs fast
Called stepwise regression in statistics
How well does it perform?

For orthogonal problems, it works perfectly
For many X ’s it will work well.
But, . . .
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Nasty example for stepwise
Y D1 D2 D3 D4 . . . Dn/2 X1 X2
1 1 0 0 0 . . . 0 −1 + δ +1 + δ
1 1 0 0 0 . . . 0 +1 + δ −1 + δ
1 0 1 0 0 . . . 0 −1 + δ +1 + δ
1 0 1 0 0 . . . 0 +1 + δ −1 + δ
1 0 0 1 0 . . . 0 −1 + δ +1 + δ
1 0 0 1 0 . . . 0 +1 + δ −1 + δ
1 0 0 0 1 . . . 0 −1 + δ +1 + δ
1 0 0 0 1 . . . 0 +1 + δ −1 + δ
...

...
...

...
...

...
...

...
...

1 0 0 0 0 . . . 1 −1 + δ +1 + δ
1 0 0 0 0 . . . 1 +1 + δ −1 + δ



Nasty example for stepwise
Y D1 D2 D3 D4 . . . Dn/2 X1 X2
1 1 0 0 0 . . . 0 −1 + δ +1 + δ
1 1 0 0 0 . . . 0 +1 + δ −1 + δ
1 0 1 0 0 . . . 0 −1 + δ +1 + δ
1 0 1 0 0 . . . 0 +1 + δ −1 + δ
1 0 0 1 0 . . . 0 −1 + δ +1 + δ
1 0 0 1 0 . . . 0 +1 + δ −1 + δ
1 0 0 0 1 . . . 0 −1 + δ +1 + δ
1 0 0 0 1 . . . 0 +1 + δ −1 + δ
...

...
...

...
...

...
...

...
...

1 0 0 0 0 . . . 1 −1 + δ +1 + δ
1 0 0 0 0 . . . 1 +1 + δ −1 + δ

Stepwise regression finds:

Y = D1 + D2 + · · ·+ Dn/2
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Actually:
Y = (X1 + X2)/δ



Nasty example for stepwise
Y D1 D2 D3 D4 . . . Dn/2 X1 X2
1 1 0 0 0 . . . 0 −1 + δ +1 + δ
1 1 0 0 0 . . . 0 +1 + δ −1 + δ
1 0 1 0 0 . . . 0 −1 + δ +1 + δ
1 0 1 0 0 . . . 0 +1 + δ −1 + δ
1 0 0 1 0 . . . 0 −1 + δ +1 + δ
1 0 0 1 0 . . . 0 +1 + δ −1 + δ
1 0 0 0 1 . . . 0 −1 + δ +1 + δ
1 0 0 0 1 . . . 0 +1 + δ −1 + δ
...

...
...

...
...

...
...

...
...

1 0 0 0 0 . . . 1 −1 + δ +1 + δ
1 0 0 0 0 . . . 1 +1 + δ −1 + δ

Stepwise regression finds the wrong model
The model it finds is n/4 times bigger than it needs
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Y D1 D2 D3 D4 . . . Dn/2 X1 X2
1 1 0 0 0 . . . 0 −1 + δ +1 + δ
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Lasso will also find the wrong model



How general is this example?

One example on one algorithm isn’t real mathematics!



A success for stepwise regression

Theorem (Natarajan 1995)
Stepwise regression will have a prediction accuracy of at most
twice optimal using at most ≈ 18|X +|22q variables.

This result was only recently noticed to be about stepwise
regression. He didn’t use that term.
The risk inflation is a disaster.
The |X +|2 is a measure of co-linearity.
This bound can be arbitrarily large.
Brings up two points: we are willing to “cheat” on both
accuracy and number of variables. But hopefully not by
very much.



L0 regression is hard

Theorem (Zhang, Wainwright, Jordan 2014)
There exists an design matrix X such that no polynomial time
algorithm which outputs q variables achieves a risk better than

R(θ̂) &
1

γ2(X )
σ2q log(p).

Where γ is the RE, a measure of co-linearity.

Actual statement is much more complex and involves a
version of the assumption that P 6= NP.
It was previously known that that

R(θ̂lasso) .
1

γ2(X )
σ2q log(p).



L0 regression is VERY hard

Theorem (Foster, Karloff, Thaler 2014)
No algorithm exists which achieves all three of the following
goals:

Runs efficiently (i.e. in polynomial time)
Runs accurately (i.e. risk inflation < p)
Returns sparse answer (i.e. |β̂|0 � p)

Strongest version requires an assumption about
complexity (which I can’t understand).
The proof relies on “interactive proof theory.” (which I also
can’t understand).
The sparsity results depend on the assumptions used. We
can get |β̂|0 < cq easily, and |β̂|0 < p.99 with difficulty.
Difficult to improve to |β̂|0 ≤ p since then all the heavy
lifting is being done by the accuracy claims.



Theoretical analysis of several algorithms

Several algorithms have been proposed to solve these
In some cases they run well, in some cases they are a
disaster
Fun mathematics–but not really informative as to what to
do in practice



What to do?

Nothing will ever work perfectly
So we have to hope the world is nice to us
Let’s trust in this hope.



New algorithm: Alpha investing

Algorithm summary:
Sort the variables putting the ones you like best first

For example, linear terms before interactions
put variables used last year before new ones to try

Try each variable one at a time
Add it to the regression if it is significant

Simplest rule: keep any with |t | >
√

2 log(p)
Fancy rule: Use alpha spending. But, give yourself an α
bonus ever time you reject.



Alpha investing algorithm

Wealth = .05;
while (Wealth > 0) do

bid = amount to bid;
Wealth = Wealth - bid;
let X be the next variable to try;
if (p-value of X is less than bid) then

Wealth = Wealth + .05;
Add X to the model

end
end



New algorithm: Alpha investing

This is even more Greedy than stepwise regression
provides mFDR protection
Instead of orthogonalizing each new X , only approximately
orthogonalize it.

Can be done via sampling
Can be done use fast matrix methods

For sub-modular problems, it works well



mFDR for streaming feature selection

Let W (j) be the “alpha wealth” at time j . Then for a series of
p-values pj , we can define:

W (j)−W (j − 1) =

{
ω if pj ≤ αj ,

−αj/(1− αj) if pj > αj .
(1)

Theorem
(Foster and Stine, 2008, JRSS-B) An alpha-investing rule
governed by (1) with initial alpha-wealth W (0) ≤ αη and
pay-out ω ≤ α controls mFDRη at level α.



VIF regression

Theorem
(Foster, Dongyu Lin, 2011) VIF regression approximates a
streaming feature selection method with speed O(np).



VIF speed comparison
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Submodular

Theorem
(Foster, Johnson, Stine, 2013) If the R-squared in a regression
is submodular (aka subadditive) then a streaming feature
selection algorithm will find an estimator whose out risk is
within a factor of e/(e − 1) of the optimal risk.



About that calibration plot
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We used PAV and crossed our fingers.
Chirag Gupta has shown how to do this correctly.



Conclusions

Stepwise regression when used correctly has good
performance

include variables with |t | >
√

2 log(p)
Use interactions
Use dummy’s for missing values
Use robust p-values

Other fast alternatives
alpha investing (this talk)
Fast matrix methods (this afternoons talk)
gradient methods (Yichao Lu or try VW)



Thanks!
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