Talk 3:
Macau: Betting against Aaditya

Dean Foster

Amazon.com, NYC
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My message in one slide

@ Setting: On-line decision making
(aka adversarial data or robust time series)

@ Goal: Use economic forecasts for decision making
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My message in one slide

@ Setting: On-line decision making
(aka adversarial data or robust time series)

@ Goal: Use economic forecasts for decision making

@ Problem: Accuracy doesn’t guarantee good decisions
(We’ll take “accuracy” = “low regret.” Regret compares actual
decisions to “20/20 hindsight.” 100s of papers say how to get low
regret.)

@ Solution: Falsifiable is better definition of error

e you falsify a forecast by betting against it
e The amount it loses is its macau.

Take Aways
crazy-Calibration + low-regret —> low-macau — good decisions
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Prove the Earth is round!

@ Fun question: What personal evidence do you have that
the earth is round?
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Prove the Earth is round!

@ Fun question: What personal evidence do you have that
the earth is round?

@ Can you prove it is round? NO!

@ But, you can make claims that could easily be shown
wrong.

@ Called falsifiability
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Operationalizing falsifiability

@ We will falsify someone’s claim by winning bets placed
against them

@ Claim: Y ~ EY
e Prove it wrong by winning lots of money:

expected winnings = E (B (Y - V))

o (Y - V)is a“fair’ bet
@ Bis amount bet
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Operationalizing falsifiability

@ We will falsify someone’s claim by winning bets placed
against them

@ Claim: Y ~ EY
e Prove it wrong by winning lots of money:

expected winnings = E (B (Y - V))
o (Y - V)is a“fair’ bet

e Bis amount bet
@ How to avoid being proven wrong by:

E(B(Y—V))

(Start with bet B)
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Operationalizing falsifiability

@ We will falsify someone’s claim by winning bets placed
against them

@ Claim: Y ~ EY
e Prove it wrong by winning lots of money:

expected winnings = E (B (Y - V))
o (Y - V)is a“fair’ bet

e Bis amount bet
@ How to avoid being proven wrong by:

M = E(B(Y-Y
acau |1?§X1 ( ( ))

(worry about worst bet)
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Operationalizing falsifiability

@ We will falsify someone’s claim by winning bets placed
against them

@ Claim: Y ~ EY
e Prove it wrong by winning lots of money:

expected winnings = E (B (Y - V))

o (Y - V)is a“fair’ bet
@ Bis amount bet

@ How to avoid being proven wrong by:
myln ‘rglzg E (B (Y - Y))

(mini-max)

/929



On to calibration

0.5

© ©
w I
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Aver age Predicted
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Crazy calibration variable

Starting with our data that we observed up to time t
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Crazy calibration variable

Bi = argming S1_ (Vi — B'X;)?

We can fit ; on everything up to time t
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Crazy calibration variable

. . .
X141 Xev1o X133 Xip14 Bt Yir1 = BiXeq

From a new X;, 1 we can compute Y1
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Crazy calibration variable

Y X X Xs Xy
Yi X141 Xz X3 Xia 0
Yo | Xo Xoo  Xo3 X4 | P
Yz | Xz X2 Xgz  Xaa | D2
Ya| Xa Xao  Xuz Xa4 3
Yi X Xi2 Xi3 X | B

Looking at only the first part of the data, we can generate:

N

BOa 317 /@27 Ben 347 vy 6171
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Crazy calibration variable

Y X Xo Xs X, B y

Y X141 Xz X3 Xia 0 A Y =0
Yo | Xoy Xoo  Xo3 Xoa | P Yo = pi X
Ya |  Xs Xs2  Xsz  Xas | P2 Y3 = 05Xs
Ya| X4 Xao Xaz Xaa 3 Yo = B5X4
Ye| X Xe  Xe  Xu |Bi1 V=5 X

Each of these leads to a next round

§q7 §%7 §%7 ?za BN} y?
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Crazy calibration variable

Theorem (F 1991, Forster 1999,F and Hart (soon))
Such an on-line least squares forecast generates low regret:

T

.
> (Y- )P - min > (Vi — B'X:)? < O(log(T))
t=1

t=1
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Crazy calibration variable

Y X Xo Xs X, B y

Y X141 Xz X3 Xia 0 A Y =0
Yo | Xog Xoo  Xo3 Xo4 51 Yo = @4 X5
Ya |  Xs Xs2  Xsz  Xas | P2 Y3 = 05Xs
Ya| X4 Xao Xaz Xaa 3 Yo = B5X4
Ye| X Xe  Xe  Xu |Bi1 V=5 X

Works no matter what the X's are.

5/929



Crazy calibration variable

Y X Xo Xs X, B y

Yi Xi1 Xi2 Yi Xia 0 A \Z =0
Yo | Xo X2 Yoo X A1 Yo = @4 X5
Ya |  Xs X32 Ys  Xaa | P2 Y3 = 05Xs
Ya| Xa Xa2 Yo o Xu 3 Yo = 55X
Ye| X Xe Vi Xu |Bia Vi=B X

Even if one of the X’s were Y'!
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Crazy calibration variable

Y X Xo Xs X, B y

Yi Xi1 Xi2 Yi Xia 0 A \Z =0
Yo | Xo Xoo Yoo Xosa | P Yo = pi X
Ya |  Xs X32 Ys  Xaa | P2 Y3 = 05Xs
Ya| Xa Xao Yo o Xas 3 Yo = B5X4
Yo| Xa  Xe Vi Xu | By Vi=BX

Theorem (= Foster and Kakade 2008, Foster and Hart 2018)

Adding the crazy calibration variable generates low macau:

-
(Vi) D Xei(Ye— ¥o) = O(v/T log(T))
t=1
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Macau as the “normal equation”

E(Y|X) Least squares Normal equations

Statistics mﬁinZ(Y,-—ﬁ-X,-)z XX (Yi-B-X)=0

The normal equation is the same as:
maxZa’X,-(Y,' - p'X))=0
i

Which is solved by the 5 minimizer:

mﬁin msxzi: o Xi(Yi—p5'X))=0

R/2?



Macau as the “normal equation”

E(Y|X)

Statistics

Least squares

Normal equations

min >~ (¥i = 5 Xi)?

minmax 3o X; (¥~ 5-X)
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Macau as the “normal equation”

E(Y|X) Least squares Normal equations

Statistics mﬁinZ(Y,-—ﬁ-X,-)z mﬁinmaxza.x,-(y,-—ﬁ-)m

Probabilty | min £((Y - f(X))?) (Vg) E(9(X) (Y = £(X))) =0

aka E(Y|X)

The normal equation is the same as:

max E (g(X)(Y - /(X)) = 0

Which is solved by the f(-) minimizer:
mfin max E (g(X)(Y = f(X))) =0
g
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Macau as the “normal equation”

E(Y|X)

Statistics

Probability

Least squares

Normal equations

min >~ (¥i = 5 Xi)?

minmax 3o X; (¥~ 5-X)

min E((Y—w)z)

aka E(Y|X)

minmax E(g(X) (¥ = 1(X)) )

R/2?



Macau as the “normal equation”

E(Y|X)

Statistics

Probability

online

t=1

Least squares Normal equations
; Y. — B.X)? i X (Y —B-X:
mﬁan( i— B Xi) mﬁmm{;ﬁxZa i (Yi—B8-X)
min E((Y — £(X))?) mfmmgaxE(g(X) (Y f(X)))
aka E(Y|X)
low regret low macau
T T
Regret = Z( mﬂln Z — B+ X)?

T
IR
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Macau as the “normal equation”

E(Y|X)

Statistics

Probability

online

Least squares

Normal equations

min >~ (¥i = 5 Xi)?

minmax 3o X; (¥~ 5-X)

. 2 . .
min E((Y — £(X))?) mfmmgaxE(g(X) (Y f(X)))
aka E(Y|X)
low regret low macau

T

azla|<1

Macau = max Z a- X (Yt - Vt)
t—1

R/2?



Macau as the “normal equation”

E(Y|X) Least squares Normal equations

Statistics mﬁinZ(Y,-—ﬁ-X,-)z mﬂinmaxza.x,-(y,-—,e-)q)

Probability | min £((Y _@)2) min mgaxE(g(X) (Y - f(X)))
aka E(Y|X)

online low regret low macau

@ statistics: Least squares <= normal equations
@ probability: Least squares <= normal equations

R/2?



Macau as the “normal equation”

E(Y|X) Least squares Normal equations

Statistics mﬁinZ(Y,-—ﬁ-X,-)z mﬁinmaxza.x,(y,-—ﬁ-m)

Probability | min E((Y—@)Z) min mgaxE(g(X) (Y - f(X))>
aka E(Y|X)

online low regret low macau

Take Aways
on-line low regret <~ on-line low macau

R/2?




low regret <~ low macau

No regret =% not falsified Not falsified =4 no regret
t|1 2 3 4 T1 T T+l T+2 T+3 - 3T t|1 2 3 4 T T+
Y [0 000 —~ 0 1 1 T 1 Y [0 1 0 1 -~ 0 1
X |11 11 LI T T IR PR | X |1 1 1 1 1
¥ijo o0 o0 00 + & &5 % Vi|6 4 6 4 6 4
How about a bet? @ Macau is zero
o regret ==/==> not faisifed @ Regretis T/9

@ So: low macau =~ low regret

00 02 04 06 08 10
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low regret <~ low macau

No regret =% not falsified Not falsified =4 no regret
t|1 2 3 4 T1 T T+l T+2 T+3 - 3T t|1 2 3 4 T T+
Y0000 -~ 0 1 1 T 1 Y, [0 1 0 1 -~ 0 1
X |11 11 LI T T IR PR | X |1 1 1 1 1
.o 0o 0 0 o0 + &4 & ... 3 Vi|e 4 6 4 6 4
How about a bet? @ Macau is zero
o regret ==/==> not faisifed @ Regretis T/9

@ So: low macau =~ low regret

00 02 04 06 08 10

(Skipping these proofs)
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Short break
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ASIDE: 4rd proof of calibration

@ Yesterday morning we proved existance of calibration by a
flow condition and using any bandit algorithm

@ Yesterday afternoon we proved calibration by the minimax
theorem.

@ Yesterday we also proved calibration by calibeating oneself

@ Today we prove it via least squares (So we’ll have to prove
on-line least squares first.)

qQ/ 29



follow the leader

Goal:

-

;
S (Y= BLX)? <D (Vi— BrX)? 4 o(T)

t=1 t=1

10/ 22



(Ye— B1 Xp)?

Mﬂ

minE:(Yt—BTXt)2 =
i

N
Il
4
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T T
mﬁin Z(Yt — BTXt)2 Z(Yt — B;Xt)z
t=1 t=1
T—1 . .
= Y (Y= 31X+ (Y7 - B Xr)?
t=1
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v

T

> (Vi - B X)?
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min Z(Yt - BTXt)2
A

v

T

> (Vi - B X)?

D (Yo = BrXe? + (Y7 — B1 X7)?
t=1
T—1 A
min (Vi - BEX)? + (Y1 — B X7)?
1

..,
Il

-

(Ye— Br_1Xe)? + (Y7 — Br X7)?

t=1
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min Z(Yt - BTXt)2
A

v

T

> (Vi - B X)?

D (Yo = BrXe? + (Y7 — B1 X7)?
t=1
T—1 A
min (Vi - BEX)? + (Y1 — B X7)?
1

..,
Il

-

(Ye— Br_1Xe)? + (Y7 — Br X7)?

t=1
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min Z(Yt — BT X;)?
i

v

Y

Mﬂ

T

> (Vi - B X)?

D (Yo = BrXe? + (Y7 — B1 X7)?
t=1
T—1 A
min (Vi - BEX)? + (Y1 — B X7)?
1

..,
Il

-

(Yi = Br_1X)? + (Y7 — BT X7)?

t=1

(Ye— B¢ Xp)?

.*
Il
N
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min Z(Yt — BT X;)?
i

v

Y

T

> (Vi - B X)?

D (Yo = BrXe? + (Y7 — B1 X7)?
t=1
T—1 A
min (Vi - BEX)? + (Y1 — B X7)?

11 /22



It is all in the last term

Win using: 3 = ming 75 (Y — 8T X0)2 + (Y7 — 87 X;)?

Minimax: 3 = ming >/ 5'(Y — BT X)2 + (.5 — 87 X)?
(called a forward model)

traditional: B;_1 = ming 33/ (Y — BTX0)2 + (Br_1 X — BT X)?

New: 5 = mins 31 (Y = 8T X2 + (Vs — 87 X0)?
where Y calibeats j.

12/929



It is all in the last term

Win using: 3 = ming 75 (Y — 8T X0)2 + (Y7 — 87 X;)?
@ Regret <0

Minimax: 3 = ming 3/ 5(Y — BT X2 + (.5 — 87 X;)?
@ Regret < 1dlog(T)

traditional: B;_1 = ming 32/ (Y — BTX0)2 + (Br_1 X — BT X)?
@ Regret < dlog(T)

New: 5 = ming SN (Y = BT X2 + (Vg — 87 X0)?
where Y calibeats §.

@ Regret < Ezdlog(T)

e Where 52 = ¥;(1 — ;) and 5 = (1/T) X 62

12/929



°
o

o
IS

Average Y
o
w

IS4
N

°
-

0.1 0.15 0.2 0.25
Average Predicted

If you saw this pattern in a regression, you might try fitting a
polynomial to this variable. That is exactly what we will do!
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Calibration via regression

Goal: E(Y-VY|Y=¢)=0
@ Polynomial regression in 14
@ Add Regression variables: ¥, ¥2, ¥3, ... YP
@ Bob Stine like p = 5, why? Looks pretty.

14/ 29



Calibration via regression

Goal: E(Y-VY|Y=¢)=0

@ Polynomial regression in 14

@ Add Regression variables: ¥, ¥2, ¥3, ... YP

@ Bob Stine like p = 5, why? Looks pretty.

@ Computing Y now entails finding a full fixed point rather
than just a linear equation.

@ Equivalently it is finding a zero of a polynomial

@ Leads to a weakly calibrated forecast

@ Random rounding leads to clasic calibration

14/ 29



Back to Macau
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Economic forecasting for decision making

@ Action A makes X dollars, action B makes Y dollars

e We want forecasts that are close to X and Y
e We want to be close on average
o We will use least squares to estimate X and Y

@ But, we want to take actions

@ Will good estimates of X and Y lead to good decisions
about Avs B?

16/ 22



Contextual Bandits

a
Xt
ay
ri(a)
Vi

q,(a)

IN

Some notation:

action taken € %*(eg inventory levels)
Context at time t

best action at time t

Reward at time t playing a

max E(ri(a)|Xi) = E(ri(a")| Xt)

E(rn(a)|X:) < qia)
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Contextual Bandits

a
Xt
ay
ri(a)
Vi

q,(a)

IN

Some notation:

action taken € %*(eg inventory levels)
Context at time t

best action at time t

Reward at time t playing a

max E(ri(a)|Xi) = E(ri(a")| Xt)

E(rn(a)|X:) < qia)

What are good falsifiable claims about a*?

17/929



Contextual Bandits

Some notation:
a = action taken € R®¥(eg inventory levels)

X = Context attimet
ay best action at time ¢

ri(a) = Reward at time t playing a
Vt* = maaX E(rt(a)]Xt) = E(rt(a*)\Xt)

q,(a) < E(n(a)lXi) < qia)

Too precise:

“Here are two bounding functions g and g:
° g,(a) =qy(a)"
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Contextual Bandits

a
Xt
ay
ri(a)
Vi

q,(a)

IN

Some notation:

action taken € %*(eg inventory levels)
Context at time t

best action at time t

Reward at time t playing a

max E(ri(a)|Xi) = E(ri(a")| Xt)

E(rn(a)|X:) < qia)

Too loose:

@ “Hereis a;”

17/929



Contextual Bandits

Some notation:

a = action taken € R®¥(eg inventory levels)
X = Context attimet
a; = bestaction attime t

Reward at time ¢ playing a
max E(r(a)| Xt) = E(r(a")|Xt)

E(rn(a)|X:) < qia)

ri(a)
Vi

q,(a)

IN

Just right:
“Here is a target V* and approximating quadratics around a*:

° g(a) =V —qlla—a?
® gy(a) - g,(a) = Alla- &>

17/929



Why is low macau useful?

-
C(a) = Z ci(a) *=arg mai7n C(a)
t=1

@ Supposed each ¢(-) is convex
@ Goal: play ato minimize C(a)
@ Eg: We could use SGD on V¢y()
@ called “on-line convex optimization”
@ regret definition for this setting:
T
regret = Z(Ct(ét) —ci(a))

t=1

18/29



Why is low macau useful?

-
C(a) = Z ci(a) a =arg mai7n C(a)
t=1

The regret is bounded by the gradient:

regret

Il
Mﬂ

(ci(ar) — ci(a’))

.*
Il
N

(ét — a*) . VCt(ét)

]~

._.
Il
R
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Why is low macau useful?

-
C(a) = Z ci(a) a =arg mai7n C(a)
t=1

The regret is bounded by the gradient:

regret

Il
Mﬂ

(ci(ar) — ci(a’))
-

o
Il

(ét — a*) . VCt(ét)

]~

._.
Il
R

I
M~

~
—_

(& — &) (V@) - Vo)) + (& - a) - Vo)

18/29



Why is low macau useful?

C(a)

-
Z ci(a) a =arg mai7n C(a)
t=1

The regret is bounded by the gradient:

M~

regret = (c(ar) — c(a’))

-
Il

1

(& —a")-Vei(ar)

Mﬂ

Ik
R

Il
Mﬂ

(8- a) - (Vea) - Vala)) + (& —a) - Vala)

! (zero @ &;)

o
Il

(macau!)
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Why is low macau useful?

-
Z a =arg mai7n C(a)

The regret is bounded by the gradient:

.
regret = Z ci(&) — ci(a))

IN

Mﬂ X M\i

(at a)-veiar)

(& - @) - (Ve&) - V() + (& - a) - Voula)
t=1
regret < macau

18/29



Calibration Theorem

Theorem (= F. and Kakade 2008, <— new)

Let R be the quadratic regret of a forecast Y; against a linear
regression on X;. Let M be the Macau of )A/t using linear
functions of X; to create falsifying bets. Then if we have the
crazy calibration variable (i.e. [Xi]o = Y;), then

R=o(T) iff M=o(T).
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Calibration Theorem

Theorem (= F. and Kakade 2008, <— new)

Let R be the quadratic regret of a forecast Y; against a linear
regression on X;. Let M be the Macau of )A/t using linear
functions of X; to create falsifying bets. Then if we have the
crazy calibration variable (i.e. [Xi]o = Y;), then

R=o(T) iff M=o(T).

Proof sketch: Consider the forecasts (1 — w)Y; + wa - X; for
the any . Let Q(w) be the total quadratic error of this family of
forecast. The following are equivalent:

@ Q(0) < Q(w) (No regret condition)
@ @(0) is zero. (No macau condition)
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Calibration Theorem

Theorem (= F. and Kakade 2008, <— new)

Let R be the quadratic regret of a forecast Y; against a linear
regression on X;. Let M be the Macau of )A/t using linear
functions of X; to create falsifying bets. Then if we have the
crazy calibration variable (i.e. [Xi]o = Y;), then

R=o(T) iff M=o(T).

Note: Typically, R = O(log(T)) iff M = O(+/T) for the actual
algorithms | know.

19/29



Recipe for good decisions

@ List bets that you would make to show &; is not optimial
@ Convert these to regression variables

@ Add the crazy-calibration variable

@ Run a low regret least squares algorithm

@ Make decision based on this forecast

20/ 29



RL: Falsifiability value estimation

Theorem (Dicker 2019)

Least squares plus the calibration variable generates an
estimate of the RL value function with low Macau.

Theorem (Dicker 2019)

A tweaked version of TD learning with 1/sqrt(T) rates generates
an estimate of the RL value function with low Macau.
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RL: Falsifiability value estimation

Theorem (Dicker 2019)

Least squares plus the calibration variable generates an
estimate of the RL value function with low Macau.

Proof: Follows from F. and Kakade 2008.

Theorem (Dicker 2019)

A tweaked version of TD learning with 1/sqrt(T) rates generates
an estimate of the RL value function with low Macau.

Proof: Similar to Dicker and F. 2018.

21 /929



@ Current favorite paper: Foster and Rakhlin (2021), “Beyond
UCB: Optimal and Efficient Contextual Bandits with
Regression Oracles”

@ Rakhlin and | have worked on calibration, optimization and
contextual bandits other topics over the years
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@ Current favorite paper: Foster and Rakhlin (2021), “Beyond
UCB: Optimal and Efficient Contextual Bandits with
Regression Oracles”

@ Rakhlin and | have worked on calibration, optimization and
contextual bandits other topics over the years

@ Itisn’'t by me—but by Dylan Foster

29 /99



@ They assume the model is true (so not individual
sequence)

@ Under this assumption the following algorithm does
enough exploration:
e Compute the expected value of each action using least
squares

o Pick the best action

e Every now and then pick some other action:
@ But, make sure you don'’t expect to pay very much
@ Probability = e/gap works well!
@ Called inverse gap weighting
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@ They assume the model is true (so not individual
sequence)
@ Under this assumption the following algorithm does
enough exploration:
e Compute the expected value of each action using least
squares

e Pick the best action
e Every now and then pick some other action:

@ But, make sure you don'’t expect to pay very much
@ Probability = e/gap works well!
@ Called inverse gap weighting

@ O(+/T) regret
@ Rakhlin and | have extended it to work for:

e Search (additive model)
e Selecting items to sell (submodular)

23 /929



Conclusions

Take Aways
crazy-Calibration + low-regret < low-macau — good decisions
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Conclusions

Take Aways
crazy-Calibration + low-regret < low-macau — good decisions

Thanks!
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Note the three different “Fosters”:
@ Dean Foster (1991) “Prediction in the worst case.”

@ — and S. Kakade “Deterministic calibration and Nash.”
(Introduces most of the mathematics behind Macau.)

@ —and S. Hart (2021) Easier version than above of many
of the ideas of Macau.

@ Dylan Foster and Sasha Rakhlin (2021) SquareCB paper.
(Assumes |ID data to get results much stronger than | have
here. By far the best contextual bandit paper out there at
the moment.)

@ J. Forster (1999) “On Relative Loss Bounds in Generalized
Linear Regression.”

25 /929


https://projecteuclid.org/journals/annals-of-statistics/volume-19/issue-2/Prediction-in-the-Worst-Case/10.1214/aos/1176348140.full
https://homes.cs.washington.edu/~sham/papers/gt/calibration.pdf
http://www.ma.huji.ac.il/hart/abs/calib-eq.html
https://arxiv.org/abs/2002.04926

What bets to place?

convex
experts

internal regret
bandits
contextual

continuous

LQR
reinforcement Learning

Bet

[a: — a"];

ea* - eét

(ea— ep)lz—p

Ia,:a Iat:él

Pla=a)  P(a=2)

X; X (Plat:a T

(a[:a) P(a,:é,)

)

(ar — Mx;)?

log T
(ar— 2% Mixi—j)?

TD learn
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What bets to place?

convex
experts

internal regret
bandits
contextual

continuous

LQR
reinforcement Learning

Bet

[a: — a"];

ea* - eét

(ea— ep)ls—p

Ia,:a Iat:él

Pla=a)  P(a=2)

(a[:a) P(a,:é,)

X; X (Pla,:a T

)

(ar — Mx;)?

log T
(ar— 2% Mixi—j)?

TD learn

dimension
e R
€ Rk
€ Rk
e Rk
€ Rk

€ RK
c %dk log(T)
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Appendix slides

Proofs by example:
@ low Regret =~ low Macau
@ low Regret <~ low Macau
Bets:
@ Experts
@ No Internal Regret
@ Bandits, (scalar version), (exploration).
@ Contextual Bandits
@ Continuous action contextual Bandits
@ Convex optimization, (one point), (1/T with smooth)
@ Reinforcement Learning
e LQR
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No regret =~ not falsified

t|1 2 3 4 T1 T T+1 T+2 T+3 ... 3T

Y;/0 0 0 O 0o 1 1 1 1 1

Xe |1 1 1 1 1 1 1 1 1 1

Y 1 2 3 2

Yt /0 0 0 O 0 0 + +5 75 5
no regret ==/==> not falsified

T 5 10 5 2 2 3‘0

time
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No regret =~ not falsified

t|1 2 3 4 T1 T T+1 T+2 T+3 3T
[0 0 0 0 o 1 1 1 1 1
X1 1 1 1 T 1 1 1 A 1
/0 0 0 0 o0 1+ &4 & 2

On-line least squares suffers no-regret:
@ (3 minimizes YL, (Y; — 8- X;)?
o Vi=01-X
e Total error: 3 (; — ¥;)2 = ming 3(V; — 8X;)2 + 4/9
@ In general, on-line least squares has log(T) total regret
@ In this case, it actually wins by about O(1).
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No regret =~ not falsified

t|1 2 3 4 T1 T T+1 T+2 T+3 3T
Y.[0 0 0 0 o 1 1 1 1 1
X |1 1 1 1 11 1 1 A 1
/0 0 0 0 o0 1+ &4 & 2

How about a bet?
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No regret =~ not falsified

t|1 2 3 4 T1 T T+1 T+2 T+3 3T
[0 0 0 0 o 1 1 1 1 1
X1 1 1 1 T 1 1 1 A 1
/0 0 0 0 o0 1+ &4 & 2

How about a bet?

no regret ==/==> not falsified

1

1

1

Y

1

1

1

0.0 02 04 06 08 1.0

time

25

30
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No regret =~ not falsified

t|1 2 3 4 T1 T T+l T+2 T+3 3T
Y/[0 0 0 0 o 1 1 1 1 1
X |1 1 1 1 11 1 1 1
W00 00 - 0 0 b g 2 . 2

How about a bet?
e Y, >V, sothatis a safe bet!
@ Construct this bet only using X;

.
S oX(Y - V)~ T'°gg(3)
i=1

@ Betting loses Q(T)
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No regret =~ not falsified

t|1 2 3 4 T1 T T+l T+2 T+3 3T
Y/[0 0 0 0 o 1 1 1 1 1
X |1 1 1 1 11 1 1 1
%0000 o 0 0 b3 o . 3

@ Regretis O(1)
@ Macauis T/2
@ So: low regret =~ low macau
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Not falsified =~ no regret

T T+1

Yi
Xt
Yi

~
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Not falsified =~ no regret

t|1 2 3 4 T T+
[0 1 0 1 0 1
X |1 1 1 1 11
Vi 6 4 6 4 6 4

Betting

@ No bet based on X; will win anything
@ In other words,

.
mo?xZa-Xt (Y-V)=0
i=1

@ This forecast is not falsified using linear functions of X;
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Not falsified =~ no regret

t|1 2 3 4 T T+
[0 1 0 1 0 1
X |1 1 1 1 11
Vi 6 4 6 4 6 .4

But, a better forecast exists
@ S (Yi— V)2 = 36T
@ ming(Y: — BX1)? = .25T
@ Regretis 11T
@ So, regretis Q(T)
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Not falsified =~ no regret

t

1 2 3 4 T T+1
;0 1 0 1 0 1
X1 1 1 1 1 1
;|6 4 6 4 6 4

@ Macau is zero
@ Regretis T/9
@ So: low macau =4 low regret
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Bet: Convex optimization (with gradients)

In the convex optimization problem, we observe a sequence of
convex functions ¢(-). Or goal is to figure out a action X; to
take at each point in time ¢ to minimize >, c;(X}).
@ Forecast: Gradient of ¢; at each point in time ¢
(9t(x) = Ver(x))
@ Strategy: Pick a X; such that g:(X;) = 0.
@ Worry: “The real optimum x* would generate better
performance.”
@ Macau bets: [x* — X;]; bet against [g;]; — [9t]

T

Macau; = > "[x* — %;1i([gt]; — [&1]))
—1

Bet: [x*— X/
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Bet: Convex optimization (no gradients)

In the convex optimization problem, we observe a sequence of
convex functions ¢(-). Or goal is to figure out a action X; to
take at each point in time ¢ to minimize >, c;(X}).

@ Forecast: ¢(x) at points near X;, for example
Xt — X; ~ N(0,02])
@ Strategy: Pick a X; to minimize ¢(-)
@ Worry: “The real optimum x* would generate better
performance.”
@ Macau bets: (x* — X/°) - (xt — X{)
T
Macau = "(x* — &) - (x¢ — %) c(x)
t=1

Bet: [x*— X/
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Bet: Optimizing continuous convex functions (with
gradient)

Also assume each ¢; is smooth, say ¢; € Co. We'll keep all else
the same.

@ We can use the macau to look at bets for how for 3 is from
the best after the fact 5

@ Thus we know the optimum point is close to the best hind
sight deciosion point (say 1/+v/T accuracy)

@ This means the error in payoff spaceis 1/T
@ So it doesn’t require a new algorithm or even new features
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Bet: Experts

In the experts problem, we observe the payoff of k different
experts. Our goal is to generate as much value as the best
expert.

@ Forecast: one value for each arm (Y; € ®K, so ¥; € Rk
also)

@ Strategy: Pick arm with highest forecast (2; = arg max;[V;],)
@ Worry: “Always playing arm b would generate more”
@ Macau bet: e, =[0,0,0,...,1,...,0]

Macau = ep—es) (Y- Y,
u bef{'?f’..x.,k}?" z) (Yi—Yi)

Bet: ep,— ey

t
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Bet: No Internal Regret

In the no-internal regret problem, we observe the payoff of k
different experts. Our goal is to avoid feeling regret about
possibly switching one of our actions to some other action.

@ Forecast: one value for each expert (Y; € ®F, so ¥; € Rk
also)

@ Strategy: Pick arm with highest forecast (3; = arg max,-[\A/t],-)

@ Worry: “Playing ¢ when we previously played b would have
been better (RS0 > 0).”

@ Macau bet: A
(ly=c(er—€c)) - (Yi — Y1)

Betonc — b:  I5_c(ep — &)
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The rest isn’t done yet!



Bet: Bandits (vector structure)

We only see outcomes on the one of k arms we pull.

@ Forecast: Each arms payoff: [Y;]; = %, so V; € RX.

@ Strategy: Pick arm with highest forecast (3; = arg max,-[\A/t],-)
with some exploration also.
@ Worry: Always playing b might have been better.

@ Macau bet: A
(ep—€3) (Y1 —Y)

Beton b:  (ep —e3,)
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Bet: Bandits (scalar version)

Play a; € {1,...,k} and only see its outcome.

@ Forecast: the arm actually played: Y; = ;;t,((aa[t)) SO
V;(at) e R

@ Strategy: Pick arm with highest forecast
(& = arg max; Y;(f)) with some exploration also.

@ Worry: Always playing b might have been better.

@ Macau bet: | |
ar=b ar=a; {
— == Y: — Y,
<Pt(b) Pt(at)>( 0

Bet on b: /a':bb _ oy
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Bandits exploration

@ Macau keeps the mean correct

@ We would also high probability statements

@ So, we need p;(b) to not be too small

e Easy math: py(b) > t~'/3, but not optimal rates of
convergence

e Giving up a log: p;(b) > t~1/2. But, as Y;(b) gets closer to
Y:(2;) we sample more often. On a log scale, this means
we need k log(T) features.

e Note: the fixed point solution will generate some
randomization above and beyond that given by the lower
bounds

@ Similar behavior to UCB, but a different philosophy to
justify it.
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Bet: Contextual Bandits (vector version)

First we observe X; € R9, then we play an arm a; and observe

. . relg,—j
its outcome (vector version: [Y{]; = 5255):

@ Forecast: Y; = Xi3;_1, with 3 € RI<K ¥, e Rk,
@ Strategy: Pick arm with highest forecast

(& = arg max;[Y{]))-
@ Worry: Using some other g* might be better.
@ Naive Macau bet (a; — b):

(s -55,)>0 — €2,) - (Vi = ¥1)

@ These are hard to put in a linear space. But, given the low
dimension (VC=d + 2) hope spring eternal.

Beton b:  (ep— e3,)
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Bet: Continuous action for contextual Bandits

First we observe X; € R9, then we play an action a; € A C R¥
and observe its outcome. (We’ll actually penalize a
quadratically and hence avoid the set A.)

e Forecast: Yi(a) = X,/ ;_1a— a' a/2, with 8 € R¥*K and
\A/t(a) € Rk,
@ Strategy: Pick “best” action: &; = arg max Yi(a) = X, B;_+.
a
@ Worry: Using some other g* might be better.
@ Naive Macau bet (& — (1 — €)a; + eX,' B%):

(X B — X B7) - (a — &) (Ye(ar) — Yi(ar))

Bet in direction X" 3*:  (fillin)
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Reinforcement Learning

The RL value function:

Vi =maxE <Z v =tr(al)

i=t

’)

Vi = E (n(@) + vV | F)

(v is discount rate.) Recursively:

42 /29



Reinforcement Learning

The RL value function:

Vi =maxE (Z v =tr(al)

i=t

’)

Vi = E (n(@) + V4| Fr)

(v is discount rate.) Recursively:

V* is a Y-variable and an X-variable!
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