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This is not calibrated
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Anything easily fixed isn’t calibrated
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Calibration is unbiasedness

Simple unbiasedness: E(Y − Ŷ ) ≈ 0.

We want more:

E(Y − Ŷ |Ŷ ≈ c) ≈ 0
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Calibration theory: example

Calibration is a minimal condition for performance
On sequence: 0 1 0 1 0 1 0 ...
The constant forecast of .5 is calibrated
The constant forecast of .6 is not calibrated
The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated

But the forecast .1 .9 .1 .9 .1 .9 ... is pretty good!
Yes, it has better “refinement.”
But, it isn’t calibrated.
Our goal: Keep this refinement, but make it calibrated
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Calibration is achievable

Theorem
A calibrated forecast exists.



Calibration is achievable

Theorem
A calibrated forecast exists.

proof:
Apply mini-max theorem.

(Sergiu Hart)



Calibration is achievable

Theorem
A calibrated forecast exists.

Detailed proof:
Game: between the statistician and Nature.

Natures strategy is a distribution over sequences of rain. (A
distribution over the 2T sequences.)
The statisticians strategy is a forecasting function. (A
function mapping 2T to {ε,2ε, . . . ,1}.)
This is a two person, zero sum game with a finite set of
actions.

If the statistician knew the process she could easily “win.”
Compute E(Xt |X1, . . . ,Xt−1)
round to the nearest ε grid point
Play that forecast
By LLN the empirical average is close to the forecast

By the mini-max theorem the statistician can always win.



Calibration exists: So what?

Predicting the “grand average” is calibrated
But it is a crappy forecast.

We have lots of ways of generating good forecasts:
probabilistic models
Time series: ARIMA, etc
on-line least squares regression
Combining experts

None are guaranteed to be calibrated

Goal: Find a way to convert these good forecasts into
calibrated forecasts without removing their goodness.
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Bias / Variance decomposition

bias:
β ≡ E(Y |Ŷ )− Ŷ

variance:
VAR = Var(Y − E(Y |Ŷ ))

Mean Squared error:

MSE = E(Y − Ŷ )2 = E(β2) + VAR

For binary sequences:
Bias is called Calibration
Variance is called Refinement
MSE is called Brier Score



Brier score

“Conditional expectation”:

ρ(x) =
∑

t Yt Iŷt=x∑
Iŷt=x

Bias: β(x) = ρ(x)− x
Brier score / MSE:

BS =
1
T

T∑
t=1

(Yt − Ŷt)
2

Decomposition (MSE = bias + Variance):

1
T

T∑
t=1

(Yt − Ŷt)
2

︸ ︷︷ ︸
BS

=
1
T

T∑
(Ŷ − ρ(Ŷ ))2︸ ︷︷ ︸

Calibration

+
1
T

T∑
(Yt − ρ(Ŷt))

2︸ ︷︷ ︸
Refinement



Defining calibeating

Calibration is fixable after the fact. But, can we fix it as we go
along?

Start with a forecast ŷt
Calibration K (ŷ)
Refinement R(ŷ)

Find a new forecast ỹt that doesn’t pay the calibration
costs of ŷ

Definition (Calibeating)

ỹ calibeats ŷ if:
BS(ỹ) ≤ R(ŷ).

ỹ keeps any patterns found by ŷ
ỹ doesn’t “pay” the calibration error



Calibeating many forecasters

We can extend this to calibeating many forecasters.

Definition (Calibeating)

ỹ calibeats a collection of forecasts {ŷ1, . . . , ŷn} if for all i :

BS(ỹ) ≤ R(ŷ i).



Calibeating is easy

Consider a family of forecasts: ŷ i
t

Break up the interval [0,1] into small buckets Bj .
Knowing which bucket each forecast is in is enough
information to approximately compute the refinement of the
forecast
Make these buckets into regression variables:

X ij
t = Iŷ i

t∈Bj

ỹt is generated by an on line regression: Y ∼ X .

Theorem

The forecast combination ỹt will ε-calibeat ŷ i
t if we use buckets

with width less than ε.



Calibeating is easy, but it can be calibeaten!

We can find ỹ that calibeats ŷ . But, there is no reason for ỹ to
be calibrated. So it can be calibeaten. The result likewise isn’t
calibrated, so it can be calibeaten.

This can go on ad infinitum
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Stopping the infinite regress

We can have Ct calibeat At and Bt .
Suppose at each time t we pick Bt = Ct .
Requires a fixed point computation
Ct calibeats At

Ct calibeats Ct :
BS(Ct) ≤ R(Ct)

So Ct is calibrated.

Theorem
For any set of forecasts, there is a combination forecast which
calibeats each element in the set, and is also calibrated.



Freebie: Calibeating yourself is calibrated

If we use this theorem with an empty set then C is calibrated:

Corollary
If C calibeats itself, then C is calibrated.



About fixed points

Suppose we will forecast Ct . The calibeating algorithm would
say we should instead forecast g(At ,Ct). If this happens to be
Ct , we are done. Ignoring At this means we want Ct = g(At).

Theorem (Outgoing distribution)

There exists a probability distribution on C such that:

E(|x − C|2 − |x − g(C)|2) ≤ δ2

for all x.

Proof is via the mini-max theorem (so linear programming can
find the answer.)

This means the BS of using C is better than the BS of
using the correct answer g(C).
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Tension between calibration and BS

We know never to randomize when minimizing a quadratic
loss function
calibration requires randomization
In fact, possibly LARGE randomizations, eg:

P(ŷt = .2) = P(ŷt = .5) = P(ŷt = .9) = 1/3

Large randomizations are not “quadratic safe” in that the
average will always have a much lower Brier score

Theorem (with Johnson 2013)
Randomly rounding an exponential smooth to the nearest grid
point is almost calibrated.

But this is merely calibrated, and doesn’t easily extend to
calibeating arbitrary forecasts.
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True fixed points

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set S, there exists a
point C ∈ S such that:

E(|x − C|2 − |x − g(C)|2) ≤ 0

for all x ∈ S.

Proof is via the Brouwer’s fixed point. In fact, it is equivalent to
Brouwer’s fixed point theorem.



True fixed points

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set S, there exists a
point C ∈ S such that:

E(|x − C|2 − |x − g(C)|2) ≤ 0
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Can create a deterministic “weak” calibration



True fixed points

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set S, there exists a
point C ∈ S such that:

E(|x − C|2 − |x − g(C)|2) ≤ 0

for all x ∈ S.

Using rounding, it can create a local random calibrated
forecast

Randomly round to nearest grid point
First few digits aren’t random, just the least significant one
Need this minimal amount of rounding to avoid impossibility
result mentioned this morning



True fixed points

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set S, there exists a
point C ∈ S such that:

E(|x − C|2 − |x − g(C)|2) ≤ 0

for all x ∈ S.

Fixed points are hard to find
Basically need to do exhaustive search at every time
period
CS people call complexity class PPAD



Forms of calibeating

We’ve have four forms of calibeating:

simple Distribution local random deterministic
LS or

average
LP Fixed point Fixed point

calibrated
classic

calibration
Both classic
and weak

Weak

quadratic
safe

Not
quadratic

safe

quadratic
safe

quadratic
safe

Thanks!
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