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Blackwell Approachability

Definitions (k = 2 on the blackboard)

T = target set
U(a,s) = vector of utilities € R

;
Ur = Y Ua,s)/T € Rk

t=1
¢ = closestpointto Ut
d(u,7) = distance from u to the set 7
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Blackwell Approachability: Proof
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Multi-calibration

@ Goal: unbiased estimation of subgroups
o called multi-calibration
o Getting lots of attention in fairness
e Gave a version of this talk at a week long symposium at
Simons Foundation on multi-calibration
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Multi-calibration

@ Goal: unbiased estimation of subgroups
o called multi-calibration
o Getting lots of attention in fairness
e Gave a version of this talk at a week long symposium at
Simons Foundation on multi-calibration
@ with k groups, we can simply break it into 2 tiny
subgroups
e horrible statistical properties
e Many cells might even be empty
e Can we only fix the k groups?
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Multi-calibration

@ Goal: unbiased estimation of subgroups
o called multi-calibration
o Getting lots of attention in fairness
e Gave a version of this talk at a week long symposium at
Simons Foundation on multi-calibration
@ with k groups, we can simply break it into 2 tiny
subgroups
e horrible statistical properties
e Many cells might even be empty
e Can we only fix the k groups?

@ We’lldo it in an on line setting
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Statistics: Anything easily fixed isn’t calibrated
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Fix the obvious problems!
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On-line Calibration

Calibration is a minimal condition for performance
@ Onsequence:0101010...
@ The constant forecast of .5 is calibrated

@ The constant forecast of .6 is not calibrated
@ The variable forecast of .1 .9.1 .9.1 .9 ... is not calibrated
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On-line Calibration

Calibration is a minimal condition for performance
@ Onsequence:0101010...
@ The constant forecast of .5 is calibrated

@ The constant forecast of .6 is not calibrated
@ The variable forecast of .1 .9.1 .9.1 .9 ... is not calibrated

e But the forecast.1.9.1.9.1.9 ... is pretty good!
@ Yes, it has better “refinement.”
o But, it isn’t calibrated.
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Calibration is achievable

Blackwell approchability = no-internal regret = calibration.
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Calibration is achievable

Calibrated forecasts exist.
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Calibration is achievable

Calibrated forecasts exist.

proof:
Apply mini-max theorem.
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Calibration is achievable

Calibrated forecasts exist.

Detailed proof:
@ Game between the statistician and Nature.
@ Fine the value of a 22" x 102" matrix game.
@ (Sergiu Hart: 1995 to 2023)
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These proofs were a bit fast

@ These proofs are cute
@ But still they take a few hours to understand
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These proofs were a bit fast

@ These proofs are cute
@ But still they take a few hours to understand
@ So | doubt you got all the details

@ I'll do a more useful proof

e Uses least squares regression (so something you know)
o Is practical (so details worth learning)
e Solves the multi-calibration problem also
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Macau: Operationalizing falsifiability

@ We will falsify someone’s claim by winning bets placed
against them

e Claim: Y ~ EY
e Prove it wrong by winning lots of money:

expected winnings = E (B (Y - V))

o (Y- Y)is a“fair’ bet
@ Bis amount bet
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Macau: Operationalizing falsifiability

@ We will falsify someone’s claim by winning bets placed
against them

e Claim: Y ~ EY
e Prove it wrong by winning lots of money:

expected winnings = E (B (Y - V))
o (Y- Y)is a“fair’ bet

e Bis amount bet
@ How to avoid being proven wrong by:

E(B(Y—V))

(Start with bet B)
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Macau: Operationalizing falsifiability

@ We will falsify someone’s claim by winning bets placed
against them

e Claim: Y ~ EY
e Prove it wrong by winning lots of money:

expected winnings = E (B (Y - V))
o (Y- Y)is a“fair’ bet

e Bis amount bet
@ How to avoid being proven wrong by:

M = E(B(Y-Y
acau |rg‘a§>§ ( ( ))

(worry about worst bet)

qQ/929



Macau: Operationalizing falsifiability

@ We will falsify someone’s claim by winning bets placed
against them

e Claim: Y ~ EY
e Prove it wrong by winning lots of money:

expected winnings = E (B (Y - V))

o (Y- Y)is a“fair’ bet
@ Bis amount bet

@ How to avoid being proven wrong by:
m&n ‘r‘g'aé E (B (Y - Y))

(mini-max)
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Crazy calibration variable

Y X X Xs X
Yi Xi1 X2 Xiz Xis
Yo |  Xo Xoo  Xos Xo4
Yz |  Xa X2 Xzz Xz
Ya| X Xz Xas Xaa
Yi| X X2 Xis  Xu

Starting with our data that we observed up to time t
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Crazy calibration variable

il Xi X2 Xiz3 Xia

Be = argming 3j_4 (Vi — 5'X))?

We can fit 3; on everything up to time t
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Crazy calibration variable

Y X X Xs X
Yi| X X2 Xiz Xua
Yo |  Xo Xoo  Xos Xo4
Yz |  Xa X2 Xzz Xz
Ya| X Xz Xas Xaa
Yi Xi1 Xio Xi3 Xia

Xiv11 X2 Xepiz Xe1a Bt

From a new X;.{ we can compute VM

. 5
Yir1 = BiXti
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Crazy calibration variable

Y Xi1 X2 Xiz Xis 0

Yi Xt Xio Xi3 Xia | Bt-1

Looking at only the first part of the data, we can generate:

N

B\Oa 317 321 B\Sa 347 ey 61‘71
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Crazy calibration variable

Yi Xi1 X2 Xiz Xis 0

Yi X Xio Xi3 X | B

Each of these leads to a next round

yq» y%7 ?%’ ?h7
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Crazy calibration variable

Y X Xo Xs X, B 4

Y Xi1 X2 Xiz Xis 0 X Y; =0
Yo Xo1 Xop  Xoz Xo4 1 Y2 = @4 Xo
Y3 |  Xa Xs2 Xz Xaa | P2 Y3 = [pXs
Ya| X Xao Xaz Xas | B3 Yo = 35X
Yi Xt Xio Xi3 X | B Vi =06, X

Theorem (F. 1991, Forster 1999)
Such an on-line least squares forecast generates low regret:

T T
> (Y- )P - mﬂinZ(Yt — B'X;)? < O(log(T))

t=1 t=1
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Crazy calibration variable

Y X Xo Xs X, B 4

Y Xi1 X2 Xiz Xis 0 X Y; =

Yo Xo1 Xop  Xoz Xo4 1 Y2 = @4 Xo
Y3 |  Xa Xs2 Xz Xaa | P2 Y3 = [pXs
Ya| X Xao Xaz Xas | B3 Yo = 35X
Yt X1 Xio Xi3 X | B Vi=5 X

Works no matter what the X's are.
Example: Use previous X; ; = \A’,_ i. (F. and Stine 2021)
But we are going to go one better: X; = Y.
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Crazy calibration variable

Y X Xo Xs X, B 4

Y Xi1 Xi2 i X 0 X Y; =

Yo Xo1 X2 Yoo X P Y2 = @4 Xo
Y3 |  Xa Xa2 Yo Xa | D2 Y3 = [pXs
Ya| Xu Xaz Yoo Xaa | B3 Ya = [5X4
Yt X1 Xio v; Xia | Bt—1 Yi=58_,X%

Theorem holds when one of the X;’s is Y;!
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Crazy calibration variable

Y X Xo Xs X, B 4

Y Xi1 Xi2 i X 0 X Y; =

Yo Xo1 X2 Yoo X P Y2 = @4 Xo
Y3 |  Xa Xa2 Yo Xa | D2 Y3 = [pXs
Ya | X Xa2 Yo Xas | B3 Ya = 35X
Yi Xi1 Xio V: Xu | Br_1 Vi=05_ X

Theorem (= F. and Kakade 2008, F. and Hart 2018)
Adding the crazy calibration variable generates low macau:

.
(Vi) Y Xui(Yi— Vi) = O(\/T log(T))

t=1
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Macau as the “normal equation”

E(Y|X) Least squares Normal equations

Statistics mﬁinZ(Y,-—ﬁ-X,-)z XX (Yi—B-X)=0

The normal equation is the same as:
maxZo/X,—(Y,- - B'X))=0
i
Which is solved by the 5 minimizer:

mﬁ@n mszi: o X(Yi—5'X))=0
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Macau as the “normal equation”

E(Y|X) Least squares

Normal equations

Statistics mﬁin Z (Y — 8- X)?

m|n max E -

(Yi— B3 X)
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Macau as the “normal equation”

E(Y|X) Least squares Normal equations

Statistics mﬁinE:(Y,-—ﬂ-X,-)2 mmmaxZa (Yi—p8-X)

Probability | min £((Y - f(X))?) (vg) E(9(X) (Y = £(X))) =0

aka E(Y|X)

The normal equation is the same as:

max E (g(X)(Y - (X)) = 0

Which is solved by the f(-) minimizer:

min max E (g(X)(Y ~ £(X))) = 0

11 /22



Macau as the “normal equation”

E(Y|X)

Statistics

Probability

Least squares

Normal equations

min D~ (¥i = 6 Xi)?

mlnmaxZa (Yi—p8-X)

min E((Y — f(X))?)
N~
aka E(Y|X)

minmax E(g(X) (Y~ 1(X)) )
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Macau as the “normal equation”

E(Y|X)

Statistics

Probability

online

Least squares

Normal equations

min D~ (¥i = 6 Xi)?

mlnmaxZa (Yi—p8-X)

. 2 . .
min E((Y — 1(X))?) | minmax E(g(X) (Y f(X)))
aka E(Y|X)
low regret low macau

T

T

Regretz Z(Yt — S\/t)Z — mﬁgn Z(Yt - p- )(1*)2

t=1

t=1
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Macau as the “normal equation”

E(Y|X)

Statistics

Probability

online

Least squares Normal equations

mﬁinE:(Y,-—ﬂ-X,-)2 mlnmaxZa (Yi—p8-X)

. 2 .
min £((Y = f(X))?) mf.nmgaxE(g(X) (Y - f(X)))
aka E(Y|X)
low regret low macau

-
Macau = max Za X,(Y,— Y,)

azlal<1
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Macau as the “normal equation”

E(Y|X) Least squares Normal equations

Statistics mﬁinZ(Y,-—ﬁ-X,-)z mﬁinmsta-X,-(Y,-—ﬁJ(;)

Probability | min E((Y—w)z) min mgaxE(g(X) (Y - f(X)))
aka E(Y|X)

online low regret low macau

@ statistics: Least squares <= normal equations
@ probability: Least squares < normal equations
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Macau as the “normal equation”

E(Y|X)

Statistics

Probability

online

Take Aways
on-line low regret <~ on-line low macau

Least squares

Normal equations

min D~ (¥i = 6 Xi)?

mlnmaxZa (Yi—p8-X)

. 2 . .
min E((Y — 1(X))?) | minmax E<g(X) (Y f(X)))
aka E(Y|X)
low regret low macau
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low regret <~ low macau

No regret =& not falsified Not falsified =% no regret
t]1 2 3 4 . T1 T T+l T+2 T+43 ... 3T t|1 2 3 4 .. T T
/0 000 --- 0 1 1 1 1 e 1 Y/[0 1 0 1 - 0 1
X |1t 1 11 11 1 1 1 e 1 X1t 1 1 1 . 1 1
Vilooo0o0 00 1 &H &5 H V|6 4 6 4 . 6 4

” .
How about a bet? @ Macau is zero

@ Regretis T/9
@ So: low macau =% low regret

4

o w0 0 150 20 0 an

00 02 04 06 08 10
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low regret <~ low macau

No regret =& not falsified Not falsified =% no regret
t]1 2 3 4 . T1 T T+l T+2 T+43 ... 3T t|1 2 3 4 T T
/0 000 --- 0 1 1 1 1 e 1 Yl[0o 1 0 1 - 0 1
X |1t 1 11 11 1 1 1 e 1 X1t 1 1 1 ... 1 1
Vilooo0o0 00 1 &H &5 H Vi|6 4 6 4 6 4

” .
How about a bet? @ Macau is zero

@ Regretis T/9
@ So: low macau =% low regret

o w0 0 150 20 0 an

00 02 04 06 08 10

(Skipping these proofs)
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Why is low macau useful?

Cla)=> c(a) a =arg min C(a)

@ Supposed each ¢(-) is convex

@ Goal: play ato minimize C(a)

@ Eg: We could use SGD on Vci()

@ called “on-line convex optimization” with regret:

T

regret = > (ci(&) — cr(a”))

t=1
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Why is low macau useful?

Cla)=> c(a) a =arg min C(a)

The regret is bounded by the gradient:
T
regret = Z(Ct(ét) —ci(a))

-
< > (a—a)-Vela)
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Why is low macau useful?

Cla)=> c(a) a =arg min C(a)

The regret is bounded by the gradient:

Mﬂ

regret = (ct(ar) — ca(a’))

-
I

1

Mﬂ

(ét — a*) . VCt(éf)

.*
Il
N

I
]~

(& — ) (Vela) - Va()) + (& - a) - Va(a)

._.
Il
R
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Why is low macau useful?

.
regret = Y (ci(&) — (@)

g (zero @ &)
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Why is low macau useful?

Cla)=> c(a) a =arg min C(a)

The regret is bounded by the gradient:

-
regret = Y (ci(&) — (@)

t=1

(ét — a*) . VCt(ét)

Mﬂ

t=1
T — —
= Y (&-a)- (Val(a) - Vo)) + (& - a) - Vola)
t=1
regret < macau
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Calibration Theorem

Theorem (= F. and Kakade 2008, <— new)

Let R be the quadratic regret of a forecast Y against a linear
regression on X;. Let M be the Macau of Y; using linear
functions of X; to create falsifying bets. Then if we have the
crazy calibration variable (i.e. [Xi]o = Yt), then

R=o(T) iff M=o(T).
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Calibration Theorem

Theorem (= F. and Kakade 2008, <— new)

Let R be the quadratic regret of a forecast Y against a linear
regression on X;. Let M be the Macau of Y; using linear
functions of X; to create falsifying bets. Then if we have the
crazy calibration variable (i.e. [Xi]o = Yt), then

R=o(T) iff M=o(T).

Proof sketch: Consider the forecasts (1 — w) Vi + wa - X; for
the any . Let Q(w) be the total quadratic error of this family of
forecast. The following are equivalent:

@ Q(0) < Q(w) (No regret condition)
@ Q'(0) is zero. (No macau condition)
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Calibration Theorem

Theorem (= F. and Kakade 2008, <— new)

Let R be the quadratic regret of a forecast Y against a linear
regression on X;. Let M be the Macau of Y; using linear
functions of X; to create falsifying bets. Then if we have the
crazy calibration variable (i.e. [Xi]o = Yt), then

R=o(T) iff M=o(T).

Note: Typicall, R = O(log(T)) iff M = O(V/T) for the actual
algorithms | know.
(S. Rakhlin and D. Foster have a proof for IID.)
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Recipe for good decisions

@ List bets that you would make to show &; is not optimal
@ Convert these to regression variables

@ Add the crazy-calibration variable

@ Run a low regret least squares algorithm

@ Make decision based on this forecast

15/9292



That is Macau

Take Aways
crazy-Calibration + low-regret <= low-macau — good decisions
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Fairness and incentives

@ Consider predicts used for college admissions
o We’'ll call the prediction: SAT
e We'll call the Y variable: GPA

@ We are interested in fair incentives

e The incentive story works better for employment,
e But the names will be useful, so we’ll stick with college
admissions
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Regress Y on X or regression X on Y?

@ Basic discrimination:
E(GPA|blue, SAT=x) > E(GPA|orange, SAT=x)
o Better off being orange

e Richard Posner argued economics would drive it out
e So it simply doesn’t exist due to “rationality”
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Regress Y on X or regression X on Y?

@ Basic discrimination:
E(GPA|blue, SAT=x) > E(GPA|orange, SAT=x)
o Better off being orange

e Richard Posner argued economics would drive it out
e So it simply doesn’t exist due to “rationality”

@ But even if
E(GPA|blue, SAT=x) = E(GPA|orange, SAT=x)
we might have:
E(SAT|blue, skill=y) < E(SAT|orange, skill=y)

@ So still better off being Orange!

18/22



Backwards regression

@ Traditional regression:
- . 2
mme((Y £(X)) )
@ Reverse regression:

min E ((g(Y) - X)2>

@ Evenif f() and g() are linear, f # g~
@ (unless we have a perfect fit)
@ Called regression to the mean

19/9292



No measurement of skill

@ We don’t have skill, but we do have GPA
@ So, regress SATs on GPAs and make that calibrated

e Fair incentives
@ Economics won’t come to this solution with Laissez-faire
e Needs government intervention (F. and Vohra, 1992)
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No measurement of skill

@ We don’t have skill, but we do have GPA
@ So, regress SATs on GPAs and make that calibrated

e Fair incentives
@ Economics won’t come to this solution with Laissez-faire
e Needs government intervention (F. and Vohra, 1992)

@ Fairness then is best approximated by:

E(SAT|blue, GPA=y) ~ E(SAT|orange, GPA=y)

20 /22



References: Three different Fosters

Me:
— (1991) “Prediction in the worst case.”
— and R. Vohra (1991-1998) “Asymptotic Calibration.”
— and R. Vohra (1992) “...Affirmative Action.”
— and S. Kakade “Deterministic calibration and Nash.”
—and S. Hart (2021) “...Leaky forecasts” (easier reading).
— and S. Hart (2022) “Calibeating.”

@ — and R. Stine (2021) “Martingales and forecasts.”
Dylan:

@ Dylan Foster and Sasha Rakhlin (2021) “SquareCB.”
Jurgen:

@ J. Forster (1999) “...Linear Regression.”
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https://projecteuclid.org/journals/annals-of-statistics/volume-19/issue-2/Prediction-in-the-Worst-Case/10.1214/aos/1176348140.full
https://www.jstor.org/stable/2337364
https://journals.sagepub.com/doi/10.1177/1043463192004002004
https://homes.cs.washington.edu/~sham/papers/gt/calibration.pdf
http://www.ma.huji.ac.il/hart/abs/calib-eq.html
https://arxiv.org/abs/2209.04892
https://arxiv.org/pdf/2105.06834.pdf
https://arxiv.org/abs/2002.04926
https://link.springer.com/chapter/10.1007/3-540-48321-7_22

1 Take Aways
crazy-Calibration + low-regret < low-macau

2: Accuracy is not the same as fairness
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1 Take Aways
crazy-Calibration + low-regret < low-macau

2: Accuracy is not the same as fairness

Thanks!
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