

Blackwell, Multi-calibration and Fairness

Dean Foster

Amazon.com, NYC

Blackwell Approachability

Definitions (k = 2 on the blackboard)

$$\mathcal{T}= ext{target set}$$
 $ec{U}(a,s)= ext{vector of utilities}\in R^k$
 $\overline{U}_T=\sum_{t=1}^T ec{U}(a_t,s_t)/T\in R^k$
 $c= ext{closest point to }\overline{U}_T$
 $d(u,\mathcal{T})= ext{distance from }u ext{ to the set }\mathcal{T}$

Blackwell Approachability: Proof

$$\begin{array}{rcl} d(\overline{U}_{T+1},\mathcal{T}) & \leq & d(\overline{U}_{T+1},c) \\ (T+1)^2 d(\overline{U}_{T+1},\mathcal{T})^2 & \leq & (T+1)^2 d(\overline{U}_{T+1},c)^2 \end{array}$$

RHS =
$$(T+1)^2 |\overline{U}_{T+1} - c|_2^2$$

= $(T+1)^2 |\frac{T\overline{U}_T + U_{T+1}}{T+1} - c|_2^2$
= $|T(\overline{U}_T - c) + (U_{T+1} - c)|_2^2$
= $|T(\overline{U}_T - c)|^2 + |U_{T+1} - c)|_2^2 + \text{inner product}$
 $\leq Td(\overline{U}_T, c)^2 + 4M^2$
 $\leq 4(T+1)M^2$

$$d(\overline{U}_{T+1}) \leq 2M\sqrt{1/T} \rightarrow 0$$

Multi-calibration

- Goal: unbiased estimation of subgroups
 - called multi-calibration
 - Getting lots of attention in fairness
 - Gave a version of this talk at a week long symposium at Simons Foundation on multi-calibration

Multi-calibration

- Goal: unbiased estimation of subgroups
 - called multi-calibration
 - Getting lots of attention in fairness
 - Gave a version of this talk at a week long symposium at Simons Foundation on multi-calibration
- with k groups, we can simply break it into 2^k tiny subgroups
 - horrible statistical properties
 - Many cells might even be empty
 - Can we only fix the k groups?

Multi-calibration

- Goal: unbiased estimation of subgroups
 - called multi-calibration
 - Getting lots of attention in fairness
 - Gave a version of this talk at a week long symposium at Simons Foundation on multi-calibration
- with k groups, we can simply break it into 2^k tiny subgroups
 - horrible statistical properties
 - Many cells might even be empty
 - Can we only fix the k groups?
- We'll do it in an on line setting

Statistics: Anything easily fixed isn't calibrated

Fix the obvious problems!

On-line Calibration

Calibration is a minimal condition for performance

- On sequence: 0 1 0 1 0 1 0 ...
- The constant forecast of .5 is calibrated
- The constant forecast of .6 is not calibrated
- The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated

On-line Calibration

Calibration is a minimal condition for performance

- On sequence: 0 1 0 1 0 1 0 ...
- The constant forecast of .5 is calibrated
- The constant forecast of .6 is not calibrated
- The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated
 - But the forecast .1 .9 .1 .9 ... is pretty good!
 - Yes, it has better "refinement."
 - But, it isn't calibrated.

Theorem

Blackwell approchability \Rightarrow no-internal regret \Rightarrow calibration.

Theorem

Calibrated forecasts exist.

Theorem

Calibrated forecasts exist.

proof:

Apply mini-max theorem.

Theorem

Calibrated forecasts exist.

Detailed proof:

- Game between the statistician and Nature.
- Fine the value of a $2^{2^T} \times 10^{2^T}$ matrix game.
- (Sergiu Hart: 1995 to 2023)

These proofs were a bit fast

- These proofs are cute
- But still they take a few hours to understand

These proofs were a bit fast

- These proofs are cute
- But still they take a few hours to understand
- So I doubt you got all the details
- I'll do a more useful proof
 - Uses least squares regression (so something you know)
 - Is practical (so details worth learning)
 - Solves the multi-calibration problem also

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

- $(Y \hat{Y})$ is a "fair" bet
- B is amount bet

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

- $(Y \hat{Y})$ is a "fair" bet
- B is amount bet
- How to avoid being proven wrong by:

$$E\left(B\left(Y-\hat{Y}\right)\right)$$

(Start with bet B)

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

- $(Y \hat{Y})$ is a "fair" bet
- B is amount bet
- How to avoid being proven wrong by:

$$Macau \equiv \max_{|B| \le 1} E\left(B\left(Y - \hat{Y}\right)\right)$$

(worry about worst bet)

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

- $(Y \hat{Y})$ is a "fair" bet
- B is amount bet
- How to avoid being proven wrong by:

$$\min_{\hat{Y}} \max_{|B| \le 1} E\left(B\left(Y - \hat{Y}\right)\right)$$
(mini-max)

Y	X_1	X_2	X_3	X_4
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄
Y ₂	X_{21}	X_{22}	X_{23}	X ₂₄
Y ₃	<i>X</i> ₃₁	X_{32}	X_{33}	X ₃₄
Y ₄	X_{41}	X_{42}	X_{43}	X ₄₄
:	÷	÷	÷	:
Y_t	X_{t1}	X_{t2}	X_{t3}	X_{t4}

Starting with our data that we observed up to time t

Y	X_1	X_2	X_3	X_4
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄
<i>Y</i> ₂	X ₂₁	X_{22}	X_{23}	X_{24}
<i>Y</i> ₃	X ₃₁	X_{32}	<i>X</i> ₃₃	X_{34}
<i>Y</i> ₄	X ₄₁	X_{42}	X_{43}	X_{44}
:	:	:	:	:
Y_t	X_{t1}	X_{t2}	X_{t3}	X_{t4}

$$\hat{\beta}_t = \arg\min_{\beta} \sum_{i=1}^t (Y_i - \beta' X_i)^2$$

We can fit $\hat{\beta}_t$ on everything up to time t

Y	X_1	X_2	<i>X</i> ₃	X_4			
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄			
Y_2	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}			
<i>Y</i> ₃	<i>X</i> ₃₁	X_{32}	<i>X</i> ₃₃	X_{34}			
Y_4	X_{41}	X_{42}	X_{43}	X_{44}			
:	÷	:	÷	:			
Y_t	X_{t1}	X_{t2}	X_{t3}	X_{t4}			
	$X_{t+1,1}$	$X_{t+1,2}$	$X_{t+1,3}$	$X_{t+1,4}$	\hat{eta}_t	\hat{Y}_{t+1}	$=\hat{\beta}_t'X_t$

From a new X_{t+1} we can compute \hat{Y}_{t+1}

Y	X_1	X_2	<i>X</i> ₃	X_4	\hat{eta}
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄	0
Y ₂	X ₂₁	X_{22}	X_{23}	X_{24}	$\hat{\beta}_1$
Y ₃	<i>X</i> ₃₁	X_{32}	X_{33}	X_{34}	$\hat{\beta}_2$
Y ₄	X ₄₁	X_{42}	X_{43}	X_{44}	$\hat{\beta}_3$
:	:	:	÷	÷	:
Y_t	X_{t1}	X_{t2}	X_{t3}	X_{t4}	$\hat{\beta}_{t-1}$

Looking at only the first part of the data, we can generate:

$$\hat{\beta}_0$$
, $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\beta}_4$, ..., $\hat{\beta}_{t-1}$

Y	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃			$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}_1' X_2$
Y ₃	<i>X</i> ₃₁	X ₃₂	<i>X</i> ₃₃	X_{34}	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{eta}_2' X_3$
Y ₄	X_{41}	X_{42}	X_{43}	X_{44}	$\hat{\beta}_3$	$\hat{Y}_4 = \hat{eta}_3' X_4$
:	:	:		:	:	:
	X_{t1}	X_{t2}	X_{t3}	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Each of these leads to a next round

$$\hat{Y}_1, \quad \hat{Y}_2, \quad \hat{Y}_3, \quad \hat{Y}_4, \quad \dots, \quad \hat{Y}_t$$

Y	X_1	X_2	X_3	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄	0	$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{eta}_1' X_2$
Y ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	X_{33}	X_{34}	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{eta}_2' X_3$
Y ₄	X_{41}	X_{42}		X_{44}	\hat{eta}_3	$\hat{Y}_4 = \hat{eta}_3' X_4$
:	÷	:		:	:	:
$ Y_t $			X_{t3}		$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Theorem (F. 1991, Forster 1999)

Such an on-line least squares forecast generates low regret:

$$\sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2 - \min_{\beta} \sum_{t=1}^{T} (Y_t - \beta' X_t)^2 \leq O(\log(T))$$

Y	X_1	X_2	X_3	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃			$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}	\hat{eta}_1	$\hat{Y}_2 = \hat{\beta}_1' X_2$
Y ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	<i>X</i> ₃₃	X_{34}	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{eta}_2' X_3$
Y ₄	X_{41}	X_{42}	X_{43}	X_{44}	$\hat{\beta}_3$	$\hat{Y}_4 = \hat{eta}_3' X_4$
:	÷	:		:	:	<u>:</u>
	X_{t1}	X_{t2}	X_{t3}	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Works no matter what the X's are.

Example: Use previous $X_{t,i} = \hat{Y}_{t-i}$. (F. and Stine 2021)

But we are going to go one better: $X_t = \hat{Y}_t$.

Y	X_1	X_2	<i>X</i> ₃	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	X ₁₁	X ₁₂	\hat{Y}_1	X ₁₄	0	$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	X_{22}	\hat{Y}_2	X_{24}	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}_1' X_2$
Y ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	\hat{Y}_3	<i>X</i> ₃₄	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{\beta}_2' X_3$
Y ₄	X_{41}	X_{42}	\hat{Y}_4	X_{44}	\hat{eta}_3	$\hat{Y}_4 = \hat{eta}_3^{\prime\prime} X_4$
	÷	÷	÷	÷	1 :	:
$ Y_t $	X_{t1}	X_{t2}	\hat{Y}_t	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Theorem holds when one of the X_t 's is \hat{Y}_t !

Y	X_1	X_2	<i>X</i> ₃	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	X ₁₁	X ₁₂	Ŷ ₁	X ₁₄		$\hat{Y}_1 = 0$
Y ₂	<i>X</i> ₂₁	X_{22}	\hat{Y}_2	X_{24}	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}_1' X_2$
Y ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	\hat{Y}_3		\hat{eta}_2	$\hat{Y}_3 = \hat{\beta}_2' X_3$
Y ₄	X_{41}	X_{42}	\hat{Y}_4	X_{44}	$\hat{\beta}_3$	$\hat{Y}_4 = \hat{eta}_3' X_4$
	:	:	:	:	:	:
$ Y_t $		X_{t2}	^		$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Theorem (⇒ F. and Kakade 2008, F. and Hart 2018)

Adding the crazy calibration variable generates low macau:

$$(\forall i)$$
 $\sum_{t=1}^{T} X_{t,i}(Y_t - \hat{Y}_t) = O(\sqrt{T \log(T)})$

E(Y|X)Least squaresNormal equationsStatistics $\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$ $\sum X_i \ (Y_i - \beta \cdot X_i) = 0$

The normal equation is the same as:

$$\max_{\alpha} \sum_{i} \alpha' X_{i} (Y_{i} - \beta' X_{i})) = 0$$

Which is solved by the β minimizer:

$$\min_{\beta} \max_{\alpha} \sum_{i} \alpha' X_{i} (Y_{i} - \beta' X_{i})) = 0$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum_{\alpha} \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$

E(Y X)	Least squares Normal equations	
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\left \min_{\beta} \max_{\alpha} \sum_{\alpha} \alpha \cdot X_i \ (Y_i - \beta \cdot X_i) \right $
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$(\forall g) \ E(g(X) \ (Y - f(X))) = 0$

The normal equation is the same as:

$$\max_{g} E\left(g(X)(Y - f(X))\right) = 0$$

Which is solved by the $f(\cdot)$ minimizer:

$$\min_{f} \max_{g} E\left(g(X)(Y - f(X))\right) = 0$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{eta} \max_{lpha} \sum_{lpha} lpha \cdot X_i \ (Y_i - eta \cdot X_i)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E(g(X) (Y - f(X)))$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{eta} \sum (Y_i - eta \cdot X_i)^2$	$\min_{eta} \max_{lpha} \sum_{lpha} \alpha \cdot X_i \ (Y_i - eta \cdot X_i)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E(g(X) (Y - f(X)))$
online	low regret	low macau

Regret
$$\equiv \sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2 - \min_{\beta} \sum_{t=1}^{T} (Y_t - \beta \cdot X_t)^2$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{eta} \max_{lpha} \sum_{lpha} \alpha \cdot X_i \ \left(Y_i - eta \cdot X_i ight)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E(g(X) (Y - f(X)))$
online	low regret	low macau

$$\textit{Macau} \equiv \max_{\alpha: |\alpha| \le 1} \sum_{t=1}^{T} \alpha \cdot X_t \left(Y_t - \hat{Y}_t \right)$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum_{\alpha} \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E(g(X) (Y - f(X)))$
online	low regret	low macau

- ullet probability: Least squares \iff normal equations

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{eta} \max_{lpha} \sum_{lpha} \alpha \cdot X_i \ \left(Y_i - eta \cdot X_i ight)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E(g(X) (Y - f(X)))$
online	low regret	low macau

Take Aways

on-line low regret

⇔ on-line low macau

No regret ⇒ not falsified

								T+2		
Y_t	0	0	0	0	 0	1	1	1	1	 1
X_t	1	1	1	1	 1	1	1	1	1	 1
\hat{Y}_t	0	0	0	0	 0	0	1	$\frac{2}{T+1}$	3 7±2	 2 3

How about a bet?

t	1	2	3	4	 Т	T+1	
Y_t	0	1	0	1	 0	1	
X_t	1	1	1	1	 1	1	
\hat{Y}_t	.6	.4	.6	.4	 .6	1 1 .4	

- Macau is zero
- Regret is T/9
- So: low macau ⇒ low regret

How about a bet?

Not falsified ⇒ no regret

t	1	2	3	4	 Т	T+1	
Y_t	0	1	0	1	 0	1	
X_t	1	1	1	1	 1	1 1 .4	
Ŷ,	.6	.4	.6	.4	 .6	.4	

- Macau is zero
- Regret is T/9
- So: low macau ⇒ low regret

(Skipping these proofs)

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

- Supposed each $c_t(\cdot)$ is convex
- Goal: play a to minimize C(a)
- Eg: We could use SGD on $\nabla c_t()$
- called "on-line convex optimization" with regret:

regret
$$\equiv \sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*))$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

The regret is bounded by the gradient:

regret
$$=\sum_{t=1}^{T}(c_t(\hat{a}_t)-c_t(a^*))$$

 $\leq \sum_{t=1}^{T}(\hat{a}_t-a^*)\cdot \nabla c_t(\hat{a}_t)$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

The regret is bounded by the gradient:

$$\begin{split} \text{regret} & = \sum_{t=1}^T (c_t(\hat{a}_t) - c_t(a^*)) \\ & \leq \sum_{t=1}^T (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t) \\ & = \sum_{t=1}^T (\hat{a}_t - a^*) \cdot \left(\nabla c_t(\hat{a}_t) - \widehat{\nabla c_t}(\hat{a}_t) \right) + (\hat{a}_t - a^*) \cdot \widehat{\nabla c_t}(\hat{a}_t) \end{split}$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

The regret is bounded by the gradient:

regret
$$= \sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*))$$

$$\leq \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t)$$

$$= \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \left(\nabla c_t(\hat{a}_t) - \widehat{\nabla c_t}(\hat{a}_t) \right) + (\hat{a}_t - a^*) \cdot \widehat{\nabla c_t}(\hat{a}_t)$$

$$(macaul) \qquad (zero @ \hat{a}_t)$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

The regret is bounded by the gradient:

$$\begin{aligned} \text{regret} &= \sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*)) \\ &\leq \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t) \\ &= \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \left(\nabla c_t(\hat{a}_t) - \widehat{\nabla c_t}(\hat{a}_t) \right) + (\hat{a}_t - a^*) \cdot \widehat{\nabla c_t}(\hat{a}_t) \end{aligned}$$

regret ≤ macau

Calibration Theorem

Theorem (\implies F. and Kakade 2008, \iff new)

Let R be the quadratic regret of a forecast \hat{Y}_t against a linear regression on X_t . Let M be the Macau of \hat{Y}_t using linear functions of X_t to create falsifying bets. Then if we have the crazy calibration variable (i.e. $[X_t]_0 = \hat{Y}_t$), then

$$R = o(T)$$
 iff $M = o(T)$.

Calibration Theorem

Theorem (\implies F. and Kakade 2008, \iff new)

Let R be the quadratic regret of a forecast \hat{Y}_t against a linear regression on X_t . Let M be the Macau of \hat{Y}_t using linear functions of X_t to create falsifying bets. Then if we have the crazy calibration variable (i.e. $[X_t]_0 = \hat{Y}_t$), then

$$R = o(T)$$
 iff $M = o(T)$.

Proof sketch: Consider the forecasts $(1 - w)\hat{Y}_t + w\alpha \cdot X_t$ for the any α . Let Q(w) be the total quadratic error of this family of forecast. The following are equivalent:

- $Q(0) \leq Q(w)$ (No regret condition)
- Q'(0) is zero. (No macau condition)

Calibration Theorem

Theorem (\implies F. and Kakade 2008, \iff new)

Let R be the quadratic regret of a forecast \hat{Y}_t against a linear regression on X_t . Let M be the Macau of \hat{Y}_t using linear functions of X_t to create falsifying bets. Then if we have the crazy calibration variable (i.e. $[X_t]_0 = \hat{Y}_t$), then

$$R = o(T)$$
 iff $M = o(T)$.

Note: Typically, $R = O(\log(T))$ iff $M = \tilde{O}(\sqrt{T})$ for the actual algorithms I know.

(S. Rakhlin and D. Foster have a proof for IID.)

Recipe for good decisions

- List bets that you would make to show \hat{a}_t is not optimal
- Convert these to regression variables
- Add the crazy-calibration variable
- Run a low regret least squares algorithm
- Make decision based on this forecast

That is Macau

Take Aways

crazy-Calibration + low-regret \iff low-macau \implies good decisions

Fairness and incentives

- Consider predicts used for college admissions
 - We'll call the prediction: SAT
 - We'll call the Y variable: GPA
- We are interested in fair incentives
 - The incentive story works better for employment,
 - But the names will be useful, so we'll stick with college admissions

Regress *Y* on *X* or regression *X* on *Y*?

Basic discrimination:

$$E(GPA|blue, SAT=x) > E(GPA|orange, SAT=x)$$

- Better off being orange
- Richard Posner argued economics would drive it out
- So it simply doesn't exist due to "rationality"

Regress *Y* on *X* or regression *X* on *Y*?

Basic discrimination:

$$E(GPA|blue, SAT=x) > E(GPA|orange, SAT=x)$$

- Better off being orange
- Richard Posner argued economics would drive it out
- So it simply doesn't exist due to "rationality"
- But even if

$$E(GPA|blue, SAT=x) = E(GPA|orange, SAT=x)$$

we might have:

$$E(SAT|blue, skill=y) < E(SAT|orange, skill=y)$$

So still better off being Orange!

Backwards regression

Traditional regression:

$$\min_{f} E\left((Y - f(X))^{2}\right)$$

Reverse regression:

$$\min_{g} E\left((g(Y) - X)^{2}\right)$$

- Even if f() and g() are linear, $f \neq g^{-1}$
- (unless we have a perfect fit)
- Called regression to the mean

No measurement of skill

- We don't have skill, but we do have GPA
- So, regress SATs on GPAs and make that calibrated
 - Fair incentives
 - Economics won't come to this solution with Laissez-faire
 - Needs government intervention (F. and Vohra, 1992)

No measurement of skill

- We don't have skill, but we do have GPA
- So, regress SATs on GPAs and make that calibrated
 - Fair incentives
 - Economics won't come to this solution with Laissez-faire
 - Needs government intervention (F. and Vohra, 1992)
- Fairness then is best approximated by:

$$E(SAT|blue, GPA=y) \approx E(SAT|orange, GPA=y)$$

References: Three different Fosters

Me:

- (1991) "Prediction in the worst case."
- and R. Vohra (1991-1998) "Asymptotic Calibration."
- and R. Vohra (1992) "...Affirmative Action."
- and S. Kakade "<u>Deterministic calibration and Nash.</u>"
- and S. Hart (2021) "...Leaky forecasts" (easier reading).
- and S. Hart (2022) "Calibeating."
- and R. Stine (2021) "Martingales and forecasts."

Dylan:

Dylan Foster and Sasha Rakhlin (2021) "SquareCB."

Jürgen:

J. Forster (1999) "...Linear Regression."

Take Aways

crazy-Calibration + low-regret \iff low-macau

2: Accuracy is not the same as fairness

Take Aways

crazy-Calibration + low-regret ← low-macau

2: Accuracy is not the same as fairness

Thanks!