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Abstract

We propose a fast and accurate algorithm, VIF regression, for doing feature selection in

large regression problems. VIF regression is extremely fast: it uses a one-pass search over

the predictors, and a computationally efficient method of testing each potential predictor

for addition to the model. VIF regression provably avoids model over-fitting, controlling

marginal False Discovery Rate (mFDR). Numerical results show that it is much faster than

any other published algorithm for regression with feature selection, and is as accurate as

the best of the slower algorithms.
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1 INTRODUCTION

Datasets from areas including genetic sequences, text mining the web, image processing, and sen-

sor networks can now easily have millions of observations and hundreds of thousands of features.

Even a medium sized dataset can create a huge number of potential variables if interactions are

considered. The problem of variable selection or feature selection, which aims to select the most

predictive of an enormous number of candidate features, plays an increasingly important role in

modern research (Guyon and Elisseeff 2003).

The specific problem that we consider here is how to improve the speed of variable selection

algorithms for linear regression models of very large-scale data. Linear regression models are

widely used for building models for large problems; their simplicity makes them fast and easy to

evaluate.

The statistical embodiment of variable selection we consider here is a classic normal linear

model

y = Xβ + ε, (1)

with n observations y = (y1, . . . , yn)′ and p predictors x1, . . . ,xp, p� n, where X = (x1, . . . ,xp)

is an n × p design matrix of features, β = (β1, . . . , βp)
′ is the vector of coefficient parameters,

and error ε ∼ N(0, σ2In).

The number of the features in the dataset is often much larger than the number of the

observations. In these cases, we need to either regularize the coefficient parameters β in (1),

or select a subset of variables that can provide a jointly predictive model, assuming that only a

subset of k of the p predictors {xj}pj=1 in (1) has nonzero coefficients (Miller 2002) . The paper

presents a fast algorithm for searching for such a low dimensional model.

Our Variance Inflation Factor (VIF) regression algorithm has a computation complexity

O(pn) under the sparsity assumption that k � p . This speed enables the VIF algorithm

to handle larger data sets than many competitors, as illustrated in Figure 1. The VIF regression
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algorithm also guarantees good control of the marginal False Discovery Rate (mFDR) (Foster

and Stine 2008) with no over-fitting, and hence provides accurate predictions. Figure 2 shows

the out-of-sample performance of VIF and four competing algorithms. VIF regression is more

accurate than its fastest competitor, GPS (Friedman 2008), and is of comparable accuracy to its

slow but accurate competitors, such as stepwise regression.

[Figure 1 about here.]

[Figure 2 about here.]

1.1 Related Work

Variable selection algorithms are generally designed to seek an estimate of β that minimizes the

lq penalized sum of squared errors

arg minβ

{
‖y −Xβ‖22 + λq‖β‖lq

}
, (2)

where ‖β‖lq = (
∑p

i=1 |βi|q)1/q for q > 0 and ‖β‖l0 =
∑p

i=1 I{βi 6=0}.

The aforementioned problem of selecting a subset of variables corresponds to using an l0 norm

in (2). This problem is NP hard (Natarajan 1995), yet its solution can be greedily approximated

by stepwise regression, a standard statistical tool. Stepwise regression works well for moderate

sized datasets, but has a relatively high computation complexity, O(np2q2). It can become

very slow when n is large, since o(n/ log n) variables can enter the model without over-fitting

(Greenshtein and Ritov 2004; Breiman and Freedman 1983). Zhang (2009) developed a new

optimization algorithm FoBa, which also addresses the l0 problem, and provides a theoretical

bound on its accuracy. However, FoBa is extremely slow, as shown in our experiments; also,

unlike VIF regression, it requires cross validation to decide the sparsity of the model.

A rich literature has been developed in recent years solving (2) using an l1 norm penalty.

Exact solutions can be found efficiently due to the convexity of the l1 problem, for example,

Lasso/LARS (Efron et al. 2004) and the Dantzig Selector (Candes and Tao 2007). These l1
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methods have, however, several limitations. First, cross validation is required to determine

the penalty λ1; this is time consuming and is not realizable in the setting where predictors

are generated dynamically. Second, implementations of these algorithms have historically been

slow. Our experiments (Section 6) show that Lasso is slow compared to other algorithms; the

implementation of the Dantzig Selector is even slower than the quadratic algorithms (Hastie

et al. 2009) although it can be solved by linear programming. Faster algorithms in this category

include coordinate descent (Friedman et al. 2010) and GPS (Friedman 2008). We will show in

Section 6 that our algorithm is faster than the fastest of these algorithms, GPS.

More importantly, l1 algorithms lead to biased estimates (Candes and Tao 2007) and tend

to include more spurious variables than l0 methods, and thus do not perform as well as greedy

algorithms in highly sparse systems (Zhang 2009). This bias is due to the fact that these methods

minimize a relaxed problem and hence achieve suboptimal solutions to the original problem (Lin

et al. 2008). As a result, these optimization algorithms have less accurate predictions; as shown

in Figure 10, models built by Lasso and GPS are not as accurate as the model fitted using our

VIF regression algorithm.

Solving the non-convex problems efficiently is still highly challenging, but progress has been

reported toward this goal (Friedman 2008). In the extreme non-convex case where an l0 penalty

is applied, stepwise regression is still the most accurate approximation algorithm. The VIF

regression algorithm we present in this paper is, in fact, an improved, much faster version of

stepwise regression.

1.2 Our VIF Regression Approach

Our VIF algorithm is characterized by two components:

• The evaluation step, where we approximate the partial correlation of each candidate vari-

able xi with the response variable y by correcting (using the “variance inflation factor”)

the marginal correlation using a small pre-sampled set of data. This step can be as fast as
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O(n) for each variable.

• The search step, where we test each variable sequentially using an α-investing rule (Foster

and Stine 2008). The α-investing rule guarantees no model over-fitting and provides highly

accurate models.

The evaluation step inherits the spirit of a variation of stepwise regression, forward stagewise

regression, which evaluates variables only using marginal correlations. The small step-size for-

ward stagewise regression algorithm behaves similarly to l1 algorithms, such as Lasso and LARS

(Efron et al. 2004); hence, like its siblings, it suffers from collinearities among the predictors and

will also introduce bias in the estimates. Herein, we correct this bias by pre-sampling a small set

of data to compute the variance inflation factor (VIF) of each variable. The resulting evaluation

procedure is fast and does not lose significant accuracy.

This novel VIF procedure can be incorporated with a variety of algorithms, including stepwise

regression, LARS and FoBa. As a demonstration, we incorporate this evaluating procedure with

a streamwise regression algorithm using an α-investing rule to take full advantage of its speed.

Streamwise regression (Zhou et al. 2006) is another variation of stepwise regression. It considers

the case where predictive features are tested sequentially for addition to the model; since it

considers each potential feature only once, it is extremely fast. The resulting VIF regression

algorithm is especially useful when feature systems are dynamically generated and the size of

the collection of candidate features is unknown or even infinite. It can also serve as an “online”

algorithm in order to load extremely large-scale data into RAM feature by feature. (Note that

our method is online in features, unlike most online regression methods, which are online in

observations.)

Our approach is statistics-based in the sense that we add variables only when they are able to

pay the price of reducing a statistically sufficient variance in the predictive model. The “price”, or

the penalty λ0 in (1), is well studied in statistics. Classic criteria for the choices include Mallows’

Cp, AIC, BIC, RIC, and many other criteria (Miller 2002). Hence, unlike optimization-based
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approaches, our algorithm does not require cross validation.

We compare our VIF algorithm with classic stepwise regression, Lasso algorithm, and two

recently developed algorithms: GPS (Friedman 2008) and FoBa (Zhang 2009). Our experiments

give two main results: 1) the VIF regression algorithm is much faster than any other published

algorithms; and 2) the VIF algorithm is comparably accurate to (the slow) stepwise regression

and FoBa, but is more accurate than (the fast) GPS and Lasso.

The rest of the paper is organized as follows. In Section 2 we compare single steps in for-

ward stepwise regression and forward stagewise regression and show that the coefficient estimate

provided by the latter is biased by a factor caused by the multicollinearity and hence needs to

be corrected. We propose and present the sped-up streamwise algorithm in Section 3, and note

that our algorithm avoids overfitting; it controls the marginal False Discovery Rate (mFDR). In

Section 4, the choice of subsample size, which decides the speed of the algorithm, is discussed.

Section 5 provides guarantees against underfitting, proving that needed high signal predictors

will not be missed. Finally, we experimentally compare VIF against competing methods on

several data sets in Sections 6 and 7.

2 FORWARD SELECTION AND BIAS CORRECTION

2.1 Forward Feature Selection

Optimally solving (2) with an l0 penalty requires searching over all 2p possible subsets, which is

NP hard (Natarajan 1995), and hence computationally expensive even when p is small. Compu-

tationally tractable selection procedures have been designed to overcome this problem in light of

the model sparsity and the fact that a majority of the subset models can be ignored. Stepwise

regression is such an algorithm.

Stepwise regression sequentially searches for predictors that collectively have strong predic-

tivity. In each step, a multivariate model is statistically analyzed, and a new variable may be

added in, or an existing variable may be removed from the current model. Common procedures
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include forward selection, backward elimination, and forward-backward combination. Forward

selection starts from a constant term 1n and adds one predictor at a time; backward elimination

starts from the full set of predictors and removes one predictor in each step. Both have their own

advantages and disadvantages. For data mining applications, however, backward algorithms are

unrealistic because of the computational complexity of building models with enormous number

of potential explanatory variables. In contrast, forward procedures are much faster, and thus

more desirable.

Since a multiple regression is needed for each candidate predictor in forward stepwise regres-

sion, O(npq2) computation is required for each step, where q is the number of variables included

in the current model. We assume p � n. Given the vast set of potential predictors involved,

substantial CPU time is often required. Hence, constructing a more efficient algorithm that can

reduce the computational complexity is attractive.

In contrast, in forward stagewise regression, only marginal estimates, but not partial esti-

mates, will be computed in each evaluation step. Therefore, only O(np) computation is needed,

and it is much faster than forward stepwise regression.

We now show that forward stagewise regression leads to a bias which must be corrected to

get optimal performance. The correction of this bias with be the core of our Variance Inflation

Factor method.

2.2 Bias Correction

To show that the stagewise evaluation procedure is biased, consider a scheme in which k predictors

have already been added to the model, and we are searching for the k + 1st predictor. Without

loss of generality, assume that all the predictors are centered and normalized. Since our goal is

to find a collectively predictive linear model, the alternative hypothetical model that we want to

test is
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y = β0 + β1x1 + · · ·+ βkxk + βnewxnew + ε, ε ∼ N(0, σ2I). (3)

where 1n,x1, . . . ,xk are linearly independent variables. We abuse the notation and remain using

σ2 to denote the variance of the errors. Note that this σ2 might be different from the more

general one in Section 1. Denote X = [1n x1 · · · xk], X̃ = [X xnew], β = (β0, . . . , βk)
′ and

β̃ = (β0, . . . , βk, βnew)′.

Let β̂new be the least squares estimate of βnew in model (3). Let r be the residual of projecting

y on {1n} ∪ {xi}ki=1. The hypothetical model being considered in stagewise regression is

r = γnewxnew + ε̃, ε̃ ∼ N(0, σ̃2I). (4)

We let γ̂new be the least squares estimate of γnew in this model (4) and have the following

proposition:

Proposition 1. Under model (3),

γ̂new = ρ2β̂new, (5)

where

ρ2 = x′new(I−X(X′X)−1X′)xnew (6)

= 〈xnew,P
⊥
Xxnew〉 = 〈P⊥Xxnew,P

⊥
Xxnew〉

and P⊥X is the projection onto the orthogonal complement of the hyperplane spanned by {1n,x1, . . . ,xk},

in the space spanned by {1n,x1, . . . ,xk,xnew}.

Proof. First note that

X̃′X̃ =

 X′X X′xnew

x′newX x′newxnew

 ,
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(X̃′X̃)−1 =

 ∗ ∗∗

−ρ−2x′newX(X′X)−1 ρ−2

 , (7)

where

∗ = (X′X)−1 + ρ−2(X′X)−1X′xnewx′newX(X′X)−1

and ∗∗ = −ρ−2(X′X)−1X′xnew. Hence,

β̂new = (X̃′X̃)−1
newX̃′y

= −ρ−2x′newX(X′X)−1X′y + ρ−2x′newy

= ρ−2x′newr = ρ−2γ̂new.

A simple case with two variables, shown in Figure 3, illustrates the underlying geometric

mechanism of Proposition 1.

[Figure 3 about here.]

Proposition 1 suggests that the stagewise coefficient estimate γ̂new is simply a scaled stepwise

coefficient estimate β̂new. Thus, if the predictors are all centered, both of the hypothesis tests,

H0 : βnew = 0 and H0 : γnew = 0, can detect whether or not xnew contributes to the model.

However, the amount of the contribution that is detected by these two tests is fundamentally

different.

Under model (3), the expected estimated variance of β̂new is

E

[
̂Var(β̂new)

]
= E

[
(X̃′X̃)−1

newσ̂
2
step

]
= ρ−2σ2

by (7), where σ̂2
step = (‖r‖2 − ρ−2(x′newr)2)/(n− k − 2) is the mean squared error of this model.

On the other hand, under model assumption (4),

E
[

̂Var(γ̂new)
]

= E
[
σ̂2

stage

]
= σ̃2,
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where σ̂2
stage = (‖r‖2 − (x′newr)2)/(n− 1) is the mean squared error of model (4).

Therefore, we have approximately

̂Var(γ̂new) ≈ ρ2 ̂Var(β̂new). (8)

It follows that the corresponding t-ratios satisfy

t(stagewise)
new ≈ |ρ| · t(stepwise)

new (9)

The simulation result in Figure 4 demonstrates that these two t-ratios differ by a factor of

approximately ρ.

[Figure 4 about here.]

This bias is caused by the misspecified model assumption: under model (3), model (4) is not

valid. If ρ2 = 1, xnew is orthogonal to X, and these two procedures are identical; however, if

ρ2 < 1, or xnew is correlated with X, the errors in model (4) should be correlated. In the latter

case, the common model hypothesis testing, which assumes error independence, will not lead to

a correct conclusion.

To some extent, forward stepwise regression provides a more powerful procedure in the sense

that predictors that can be detected by stagewise regression will be spotted by stepwise regression

as well, but not necessarily vice versa. In contrast, the forward stagewise procedures may prefer

a spurious predictor that is less correlated with X to an indeed predictable variable that is highly

correlated with X. One of the criticisms of forward selections is that they can never correct the

mistakes in earlier steps (Zhang 2009); the inclusion of this spurious variable in the model might

lead to more bias. If the data have strong multicollinearity, the stagewise algorithm will reach a

resulting model that is not so predictive.

In order to illustrate this fact, we simulated p = 200 features whose are jointly Gaussian and

their covariance matrix has a form as (17) with θ = 0.9 and τ 2 = 0.1; the way we simulated the

response variable y is similar to the simulations in Section 6.3. We compared two algorithms:
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the VIF regression algorithm we propose in Section 3, and a Näıve algorithm which is exactly

the same as the VIF regression algorithm except that it does not have the t-statistic correction

procedure.

[Figure 5 about here.]

Over 50 replications, we found that on average VIF regression chose 91% of the true variables,

while the näıve algorithm chose 47.3% of the true ones. Figure 5 showed the out-of-sample error

rate of these two algorithms and Lasso on the same sets of data. It is obvious that the näıve

algorithm without a correction procedure does not perform as well as an algorithm based on the

corrected statistics.

2.3 The Fast Evaluation Procedure

In order to speed up the evaluation procedure, we take advantage of the economical computation

of forward stagewise regression, but correct the biased t-ratio in each step, thus giving results

similar in accuracy to the stepwise regression procedures.

To this end, we need to estimate the true sample distribution of γ̂new under model (3):

Proposition 2. Under model assumption (3),

γ̂new ∼ N
(
ρ2βnew, ρ

2σ2
)
. (10)

Proof. Since by (7), β̂new ∼ N(βnew, ρ
−2σ2), it follows by Proposition 1.

Now that γ̂new/(|ρ|σ) ∼ N(0, 1), with proper estimates of ρ and σ, we can have an honest

t-ratio for testing whether or not βnew = 0:

• σ̂ can be estimated by the root mean square error σ̂null under the null model H0 : βnew = 0.

Unlike σ̂step or σ̂stage (Section 2.2), which are the common estimated standard deviations in

regression analysis, the use of this null estimate σ̂null can avoid over-fitting or introducing

selection bias, especially in data with heteroskedasticity (Foster and Stine 2004).
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• ρ̂: ρ can be calculated precisely by proceeding with a multiple regression of xnew on

C = {1n,x1, . . . ,xk}, then computing ρ2 = 1 − R2
new|1···k, the unexplained proportion of

variation. This computation, however, is as expensive as the stepwise procedure, and thus

not desirable. Unfortunately, there is no easy way to estimate ρ because of the dependence

issue we discussed earlier. Most tools, including the bootstrap, break down because of

dependency among the errors, which are the only numerical products after performing a

stagewise regression. Our solution to this is to randomly sample a size m subset of the

whole dataset and use this subset to estimate ρ2 in light of the fact that each random subset

should represent the whole data. We will discuss the choice of m in Section 4.

Our fast evaluation procedure is summarized below:

The Fast Evaluation Procedure

At each step of the regression, suppose a set of predictors C = {x1, . . . ,xk} have been chosen

in the model. We assume below that all the variables xi are centered.

1. Obtain residuals r = y−XC(X
′
CXC)

−1X′Cy and root mean square error σ̂null = ‖r‖/
√

(n− |C| − 1)

from the previous step;

2. Sample a small subset I = {i1, . . . , im} ⊂ {1, . . . , n} of observations; let xI denote the

corresponding subsample of predictors x;

3. Fit r on xnew/‖xnew‖ and compute the coefficient estimate γ̂new = 〈r,xnew〉/‖xnew‖;

4. Fit xInew on {xI1 , . . . ,xIk} and compute R2
I = x′newXIC

(
(XIC)

′XIC
)−1

(XIC)
′xnew/‖xnew‖2;

5. Compute and return the approximate t-ratio as t̂new = γ̂new/(σ̂
√

1−R2
I).

3 VIF REGRESSION

The fast evaluation procedure can be adapted to speed up a variety of stepwise-like algorithms,

but it is most beneficial in massive data settings. Therefore, we incorporate it into a streamwise
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variable selection algorithm using an α-investing rule.

3.1 α-investing, Sequential Testing and mFDR

An α-investing rule is an adaptive, sequential procedure for testing multiple hypotheses (Foster

and Stine 2008). The rule works as follows. Suppose this is a game with a series of tests. A

gambler begins his game with initial wealth w0; intuitively, this is an allowance for type I error. In

the ith test (game), at level αi, if a rejection is made, the gambler earns a pay-out ∆w; otherwise,

his current wealth wi will be reduced by αi/(1−αi). The test level αi is set to be wi/(1 + i− f),

where f is the time when the last hypothesis was rejected. Hence, once the gambler successfully

rejects a null hypothesis, he earns more to spend the next few times. Furthermore, the game

becomes easier to play in the near future in the sense that αi will keep being inflated in the short

term. The game continues until the player goes bankrupt, i.e., wi ≤ 0.

The α-investing rule naturally implements a Bonferroni rule, but overcomes its conservativity,

controlling instead the marginal False Discovery Rate (mFDR).

False Discovery Rate (FDR) aims to control the Family-Wise Error Rate (FWER), arising in

multiple statistical inferences (Benjamini and Hochberg 1995). In multiple hypothesis testing,

successfully rejecting a null hypothesis is called a discovery. The classic definition of FDR is the

expected proportion of false discoveries among all discoveries throughout the whole process,

FDR = E

(
V

R

∣∣∣∣R > 0

)
P (R > 0), (11)

where V is the number of false positives, and R is the number of total discoveries. A few variants

of FDR have been introduced in the past decade, including the marginal False Discovery Rate

(mFDR), which is defined as E(V )/E(R) or E(V )/(E(R)+ 1); the positive False Discovery Rate

(pFDR) (Storey 2002), which drops the term P (R > 0) in (11); and the local false discovery rate

(fdr) (Efron et al. 2001), which is decided by the size of the test statistic z.

An α-investing procedure, controls mFDR in a sequential setting (Foster and Stine 2008):
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Proposition 3. An α-investing rule with initial alpha-wealth w0 ≤ αη and pay-out ∆w ≤ α

controls mFDRη = E(V )/(E(R) + η) at level α.

See Foster and Stine (2008) for the technical details of this theorem.

3.2 Steamwise Variable Selection and VIF Regression

Employing an α-investing rule allows us to test an infinite stream of hypotheses, while at the same

time to control mFDR. In the context of variable selection, this implies that we may order the

variables in a sequence (possibly dynamically) and include them into the model in a streamwise

manner without over-fitting.

Over-fitting is a common problem in regression analysis. The model R2 will increase when

a new variable is added, regardless of whether it is spurious or not. This in-sample over-fitting

may result in terrible predictions when the model is used out of sample. Hence, the goal of

all variable selection problems is to find a parsimonious model that has a satisfactory R2 or

model fit in order to avoid over-fitting. These problems will typically impose a penalty on the

number of variables in the model, namely, the l0 norm of the coefficient parameters, as we have

introduced in Section 1. Forward selections approach the solutions to these problems by properly

thresholding the t-ratios of upcoming variables to control the number of the selected variables.

Being able to test the variables in a streamwise way has many advantages. First, the one-

pass algorithm can save a great amount of computation if the data is massive. In most search

algorithms, adding each new variable necessitates going through the whole space of candidate

variables; the computation is expensive if the data size n × p is huge. We alleviate this burden

by reducing the loops to only one round. Second, this allows one to handle dynamic variable

sets. These include the cases where p is extremely large or unknown, resulting in a problem

in applying static variable selection criteria. This also allows one to first test the lower order

interactions and then decide which higher order interactions need testing.

Given the α-investing rule for sequential variable selection, we may proceed with our algorithm
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in a streamwise way with a guarantee of no over-fitting. We state our VIF regression procedures

in Algorithm 1. We call it “VIF” because the correction factor ρ in the key speed-up part is the

Variance Inflation Factor of the new variable with respect to the included variables.

Algorithm 1 VIF Regression: the boosted Streamwise Regression using α-investing

Input: data y, x1, x2, . . . (centered);

Set: initial wealth w0 = 0.50 and pay-out ∆w = 0.05, and subsample size m;

Initialize C = {0}; r = y − ȳ; σ̂ = sd(y); i = 1; w1 = w0; f = 0.

Sample I = {i1, . . . , im} ⊂ {1, . . . , n}.
repeat

set threshold αi = wi/(1 + i− f)

attain t̂i from the Fast Evaluation Procedure // compute corrected t-statistic

if 2Φ(|ti|) > 1− αi // compare p-value to threshold then

C = C ∪ {i} // add feature to model

update r = y − ŷC, σ̂ = RMSEC

wi+1 = wi + ∆w

f = i

else

wi+1 = wi − αi/(1− αi)
end if

i = i+ 1

until maximum CPU time or Memory is reached

* Φ is the CDF of the normal distribution.

One might worry that only going through the candidate predictors once may miss signal. In

the worst case, it may in fact miss useful predictors. However, this will not happen in cases where

the variables are orthogonal as in, for example, orthogonally designed experiments and signal

processing (using a Fourier transform or wavelet transform); this also applies to distributionally

orthogonal variables as in, for example, independent Gaussian entries in image processing. If

predictors are highly correlated, each of these variables may contribute to the model since we

are looking for a collectively linear model; as proven below, using an α-investing rule in this

case guarantees that the final model will have certain predictability. Our experiments (Section

6) show that the test accuracy of the models chosen by the VIF algorithm is highly competitive
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with those chosen by the most accurate algorithms for linear models. Furthermore, if we have

prior knowledge of the predictors, for instance, for PCA variables, we can assign a higher priority

to important variables so that they can get in the model more easily.

4 ACCURACY AND COMPUTATIONAL COMPLEXITY

Obviously, a large m (many observations used to test for inclusion of a feature) can guarantee

an accurate approximation in our algorithm (Algorithm 1), but a small m will give faster com-

putation. How large should m be in order to attain a reasonably accurate result? Ideally, we

want to pick m� n and small α and ε, such that

P

(∣∣∣∣ |ρ̂| − |ρ||ρ|

∣∣∣∣ ≤ ε

∣∣∣∣ ρ) ≥ 1− α,

where ρ is defined as in (6), the correlation between xnew and the perpendicular space of the space

spanned by included variables; ρ̂ is the sample correlation between xInew and span{1m,xI1 , . . . ,xIk}⊥.

This implies that with high probability, the bias in the correlation due to the sub-sampling is

not large compared with the true correlation. Then roughly with probability at least 1− α, the

approximate t-ratio is:

|t̂| =
|γ̂new|
σ̂|ρ̂|

=
|γ̂new|

σ̂|ρ|
(

1 + |ρ̂|−|ρ|
|ρ|

)
≈ |γ̂new|

σ̂|ρ|

(
1− |ρ̂| − |ρ|

|ρ|

)
.

Consequently, with probability at least 1− α,

(1− ε)|ttrue| / |t̂| / (1 + ε)|ttrue|. (12)

Recall that ρ2 = 1−R2
new|1···k. Let z = P⊥Xxnew, where the operator P⊥X is defined as in Propo-

sition 1. Then ρ is the sample correlation of xnew and z. Assume furthermore that (xnew, z)

are random i.i.d. samples from a bivariate normal population with correlation ρ0, then approxi-
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mately,

1

2
log

(
1 + ρ

1− ρ

)
approx∼ N

(
1

2
log

(
1 + ρ0

1− ρ0

)
,

1

n− 3

)
.

Hence, conditional on the observations (and due to the fact that we sample without replace-

ment), we have approximately:

1

2
log

(
1 + ρ̂

1− ρ̂

)∣∣∣∣ ρ approx∼ N

(
1

2
log

(
1 + ρ

1− ρ

)
,

1

m− 3

)
. (13)

Since we focus on datasets with huge n’s and in high dimensional spaces, it is unlikely that

two random vectors would be highly correlated. In fact, one can show that a d-dimensional space

can tolerate up to O(d2) random vectors that have angles greater than π/4. In light of this fact

and the approximate sample distribution (13), a crude calculation by assuming |ρ| >
√

2/2 shows

that m ≥ 200 can guarantee an ε ≤ 0.1 and an α ≤ 0.05 in (12).

As a particular numerical example, we examined the Boston Housing data, which contains

506 census tracts in Boston from the 1970 census. This data and the data description can

be downloaded from the UCI Repository of Machine Learning Databases at http://archive.

ics.uci.edu/ml/. We took MEDV, the median value of owner occupied homes as our response

variable. Serving as explanatory variables, the other thirteen variables were sequentially added

in a multiple linear regression model. In each step, we computed the “true” t-ratio ttrue of the

incoming variable by replacing the new RMSE with the old one (see Section 2.3). In addition,

sub-sampling with size m = 200 and our fast evaluation procedure were repeated 100 times,

resulting in a hundred fast t-ratios |t̃|. We then collected the ratios |t̃|/|ttrue|.

Figure 6 displays a comparative boxplot summarizing these experimental results on the thir-

teen explanatory variables of the Boston Housing data. As shown in the boxplot, taking ε = 0.1,

most of the ratios lie within the interval [1− ε, 1 + ε]. To see how sensitive these bounds are to

the actual correlation, we computed |ρ| based on Proposition 1; these |ρ|’s are annotated under

the corresponding variables in Figure 6 and are also listed in Table 8. Several variables have |ρ|
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less than
√

2/2. For these variables, despite high variances, the ratios of absolute t-ratios are

well bounded by 1±15%. This experiment validates our earlier claim that with a subsample size

of m = 200, our fast evaluation mechanism can provide a tight bound on the accuracy in terms

of the t-ratio approximation.

[Figure 6 about here.]

[Table 1 about here.]

Because VIF regression does a single pass over the predictors, it has a total computational

complexity of O(pmq2), where m is the subsample size and q is the number of variables in the

final model. Assuming sparsity in the model found, q can be much smaller than n; hence, as

long as m = O(n/q2), which can be easily achieved based on our earlier discussion, the total

computational complexity is O(pn).

5 STABILITY

Proposition 3 guarantees that our algorithm will not over-fit the data. In this section we develop

a theoretical framework and show that our algorithm will not miss important signals.

A locally important variable gets added into the model if its reduction to the sum of squared

errors exceeds the penalty λ that it brings to the penalized likelihood. However, if this impor-

tance can be washed out or masked by other variables, then for prediction purposes, there is no

difference between this variable and its surrogates, thus neither of them can be claimed “true”.

This situation is common in our application since we consider predictors that are correlated, or

even highly correlated by including high-order interactions. One will lose predictive accuracy

only when those globally important variables, which stand out in any scenarios, are missed.

To this end, we propose the following theorem, which guarantees that none of these important

variables will be missed.
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Let M be the subset of non-constant variables that are currently chosen. We define

Sλ,η(M) =

{
x :

SSEM − SSEM∪x
SSEM/(n− |M| − 1)

> (1 + η)λ

}
(14)

as the collection of variables that are λ-important with respect to model M and

Sλ,η = ∩MSλ,η(M) (15)

as the collection of λ-important variables. Notice that both of these are random sets, in other

words they depend on the observed data. Let Ĉstep, Ĉstream, and ĈVIF be the models chosen

by stepwise regression, streamwise regression with α-investing rule, and VIF-regression. An

investing rule is called η-patient if it spends at a slow enough rate that it has enough saved

to spend at least i−(1+η) on the ith variable. For example, both the investing rules in Zhou

et al. (2006) and Foster and Stine (2008) can be chosen to be η-patient. We have the following

theorem:

Theorem 1. When the algorithms stop,

(1) Sλ,0 ⊂ Ĉstep;

(2) If the number of candidate predictors p > 7 and an η-patient investing rule is used, then

S2 log p,η ⊂ Ĉstream;

(3) Suppose that x’s are multivariate Gaussian. If we use an η(1− η)/2-patient investing rule

and our sampling size m is large enough, then for any x ∈ S2 log p,η, we have P (x ∈ ĈVIF) >

1−O(1/m).

In other words, any 2 log p-important variable will likely be included by the VIF-algorithm.

Proof. (1) ∀x ∈ Sλ,η, if x /∈ Ĉstep, then SSEĈstep +|Ĉstep|·λσ̂2
Ĉstep

< SSEĈstep∪x+(|Ĉstep|+1)·λσ̂2
Ĉstep

,

and SSEĈstep−SSEĈstep∪x < λσ̂2
Ĉstep

= λSSEĈstep/(n−|Ĉstep|−1), which contradicts the definition

of Sλ,η.
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(2) Suppose that the current model is M0. If the next predictor xi ∈ S2 log p,η, then it has

t-statistic ti that meets

P (|Z| > |ti|) < P
(
|Z| >

√
(1 + η)2 log p

)
<

2 exp{−(1 + η)2 log p/2}√
(1 + η)2 log p

<
1

p(1+η)

as long as p > 7. Hence x will be chosen by any η-patient investing rule.

(3) We follow the notation in Section 4. Suppose that the current model is M0. Let ρ =√
1−R2

xi|M0
> 0 and ρ̂ be its VIF-surrogate. If the next candidate predictor xi ∈ S2 log p,η has

VIF-corrected t-statistic t̂i and true t-statistic ti, we have

P

(
|t̂i| >

√(
1 +

η

2
− η2

2

)
2 log p

∣∣∣∣∣X,y,M0

)
> P

(
|t̂i| > |ti|

√
1− η

2

∣∣∣∣X,y,M0

)

= P

(
|ρ̂| < |ρ|√

1− η/2

∣∣∣∣∣ ρ
)

= P

(
ρ̂2 <

ρ2

1− η/2

∣∣∣∣ ρ) > P
(
ρ̂2 < ρ2

(
1 +

η

2

) ∣∣∣ ρ)
> 1− m̃−1/2 8(1− ρ2) + η

2ηρ
φ(κ) + m̃−1/2 3ρ2 − 1

2ρ
κ2φ(κ) + m̃−1

(
1

2ρ2
− 2 +

13

4
ρ2

)
κ3φ(κ)

−m̃−1 (3ρ2 − 1)2

8ρ2
κ5φ(κ) +O(m̃−3/2).

> 1−O(m−1), (16)

where m̃ = m − 3/2 + ρ2/4, κ = m̃1/2ηρ/4(1 − ρ2), φ(·) is the density function of standard

normal distribution, and the expansion in the third line followed Konishi (1978), with m >

16(1 − ρ2)/ρ2η2 + 2. Note that κ3φ(κ) is bounded, and the first two non-constant terms are as

small as order m−1 with sufficiently large m; the third term is always positive which covers the

last two terms. From these the final bound follows.

There have been several recent papers on the selection consistency of forward selection. Wang

(2009) used stepwise regression to screen variables and then performed the common l1 methods

on the screened variables. The author showed that the screening path would include the true

subset asymptotically and thus the consistency of l1 methods might be pertained. Cai and Wang

(2010) used orthogonal matching pursuit, which is essentially a stagewise regression algorithm.

They showed that with certain stopping rules, the important variables (with large true β) can
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be fully recovered with high probabilities. However, both papers assume near orthogonality

and utilize parameters to constraint multicollinearity, with bounded eigenvalues in the former

and mutual incoherence in the latter. Zhang (2009) has similar assumptions. In our statistical

applications, however, multicollinearity is common since we consider interaction terms, and so

such consistency results are of limited utility. Also, as long as multicollinearity exists, there is

no proper definition for “true variables” since the significance of one variable might be washed

out by other variables. Thus, the best one can achieve are theorems such as the one presented

above guaranteeing that one will not miss high signal predictors if there are not other predictors

highly correlated with them. If multiple predictors are high signal, but correlated, we will find

at least one of them.

6 NUMERICAL EXPERIMENTS

To test the performance of VIF regression, we compare it with the following four algorithms:

• Classic Stepwise Regression. For the penalty criterion, we use either BIC or RIC, depending

on the size of the data;

• Lasso, the classic l1 regularized variable selection method (Tibshirani 1996). Lasso can be

realized by the Least Angle Regression (LARS) algorithm (Efron et al. 2004), scaling in

quadratic time in the size, n of the data set.

• FoBa, an adaptive forward-backward greedy algorithm focusing on linear models (Zhang

2009). FoBa does a forward-backward search; in each step, it adds the most correlated

predictor and/or removes the least correlated predictor. This search method is very similar

to stagewise regression except that it behaves adaptively in backward steps. In Zhang

(2009), the author also provides a theoretical bound on the parameter estimation error.

• GPS, the generalized path seeking algorithm (Friedman 2008). GPS is a fast algorithm

that finds `ε regularized models via coordinate descent. For p � n, its computation can
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be as fast as linear in n (Friedman 2008). GPS can compute models for a wide variety of

penalties. It selects the penalty via cross validation.

In the following subsections, we examine different aspects of these algorithms, including speed

and performance, on both synthetic and real datasets. All of the implementations were in R, a

widely-used statistical software package which can be found at http://www.r-project.org/.

We emphasize that unlike our VIF algorithm and stepwise regression, whose penalties are chosen

statistically, the other three algorithms are cast as optimization problems, and thus require cross

validation to decide either the penalty function (GPS) or the sparsity (Lasso and FoBa). Since

sparsity is generally unknown, to fairly compare these algorithms, we did not specify the sparsity

even for synthetic data. Instead, we used 5-fold cross validation for Lasso and GPS and 2-fold

cross validation for FoBa. Note that this only adds a constant factor to the computational

complexity of these algorithms.

6.1 Design of the Simulations

In each simulation study, we simulated p features, x1, . . . ,xp. We mainly considered three cases

of collinearities: (1) x′s are independent random vectors with each Xij (the jth element of xi)

simulated from N(0, 0.1); in other words, x’s are jointly Gaussian with a covariance matrix

Σ1 = τ 2Ip, where τ 2 ≡ 0.1; (2) x’s are jointly Gaussian with a covariance matrix

Σ2 = τ 2



1 θ · · · θp−1

θ 1 · · · θp−2

...
...

. . .
...

θp−1 θp−2 · · · 1


(17)
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with τ 2 ≡ 0.1; and (3) x’s are jointly Gaussian with a covariance matrix

Σ3 = τ 2



1 θ · · · θ

θ 1 · · · θ

...
...

. . .
...

θ θ · · · 1


(18)

with τ 2 ≡ 0.1. We randomly picked q = 6 variables from these p variables. The response variable

y was generated as a linear combination of these q variables plus a random normal noise. The q

predictors has equal weights β = 1 in the all subsection except Section 6.5, where the weights are

set to be {6, 5, 4, 3, 2, 1}. The random normal noise in most subsections has mean 0 and variance

1 without further explanation; its variances varies from 0.4 to 4 in Section 6.5 to investigate

different signal to noise ratios.

In all simulations, we simulated 2n independent samples, then used n of them for variable

selection and another n for out-of-sample performance testing. The out-of-sample performance

was evaluated using mean sum of squared errors:
∑2n

i=n+1(yi − xiβ̂)2/n, where β̂ is the output

coefficient determined by the five algorithms based on the training set, namely the first n samples.

The sample size n is fixed at 1,000 without further clarification. Since the true predictors were

known, we also compared the true discovery rate and false discovery rate in Section 6.3.

6.2 Comparison of Computation Speed

We simulated the independent case to measure the speed of these five algorithms. The response

variable y was generated by summing six of these features with equal weights plus a random

noise N(0, 1). Considering the speed of these five algorithms, the number of features p varies

from 10 to 1,000 for all five algorithms, and from 1,000 to 10,000 for VIF Regression and GPS.

[Figure 7 about here.]

As shown in Figure 7, VIF Regression and GPS perform almost linearly, and are much faster

than the other three algorithms. Given the fact that it does a marginal search, the FoBa algorithm
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is surprisingly slow; hence, we did not perform cross validation for this speed benchmarking.

[Figure 8 about here.]

To further compare VIF and GPS, Figure 8 shows two close-up plots of the running time of

these two algorithms. Both of them appear to be linear in p, the number of candidate predictors.

Although GPS leads when p is small, VIF Regression has a smaller slope and is much faster

when p is large.

6.3 mFDR Control

In order to test whether or not these algorithms successfully control mFDR, we studied the

performance of the models chosen by these five algorithms based on the training set. We took

the simulation scheme in Section 6.1 and the same simulation was repeated 50 times. We then

computed the average numbers of false discoveries and true discoveries of features, denoted by

Ê(V ) and Ê(S), respectively. Taking an initial wealth w0 = 0.5 and a pay-out ∆w = 0.05 in our

VIF algorithm, with an η = 10 in Proposition 3, the estimated mFDR is given by

m̂FDRη =
Ê(V )

Ê(V ) + Ê(S) + η
. (19)

Summarized in Table 2 are Ê(S), the average number of true discoveries, Ê(V ), the average

number of false discoveries, and m̂FDRη, the estimated mFDR in the first simulation with

independent Gaussian features. As can be seen, with the exception of Lasso, the other four

algorithms successfully spotted the six true variables and controlled mFDR well. This is not

surprising, however, since these algorithms aim to solve non-convex problems (Section 1). Lasso

solves a relaxed convex problem; hence, it tends to include many spurious variables and then

shrinks the coefficients to reduce the prediction risk.

[Table 2 about here.]

[Table 3 about here.]
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Table 3 provides a similar summary for the case where the features were generated using a

multivariate Gaussian distribution with the covariance matrix given in (17). Lasso was again not

able to control mFDR; both stepwise regression and FoBa controlled mFDR at low levels in all

cases. GPS and VIF regression also did well except for the case with very high multicollinearity.

However, as we mentioned earlier, in the case with high multicollinearity, each of the collinear

predictors could make a contribution to the model accuracy, since we are building a nested model.

Hence, it is hard to claim that the “false discoveries” are indeed false in building a multiple linear

model. In any case, since our main purpose in employing an α-investing control rule is to avoid

model over-fitting, we will look at their out-of-sample performance in the next subsection.

6.4 Out-of-sample performance

We used the aforementioned n = 1, 000 held-out observations to test the models chosen by the

five algorithms. The case with independently generated features is shown in Figure 9, which

illustrates a comparative boxplot for the out-of-sample mean squared errors of the five chosen

models in 50 runs. As can be seen, the models chosen by VIF regression perform as well as

the two best algorithms, stepwise regression and FoBa, and does better than GPS and Lasso.

Figure 10 provides a similar scenario for jointly Gaussian features, except for the case with

extremely high correlation; VIF regression has slightly higher mean squared errors, but is still

better than GPS and Lasso. The latter boxplot clarifies our claim that although more “false

discoveries” were discovered by VIF regression, these features are not truly false. In fact, they

helped to build a multiple model that did not overfit as demonstrated in Figure 10. In this sense,

VIF regression does control mFDR. Given the fact that VIF Regression is substantially faster

than other algorithms, these results are very satisfactory.

[Figure 9 about here.]

[Figure 10 about here.]
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6.5 The Effect of Signal-to-noise Ratio

To show how the signal-to-noise ratio may affect our algorithm, we took the simulation scheme

with Σ2 and θ = 0.5 or 0.9. The number of features p was fixed to be 200. y was a linear

combination of q = 6 random chosen variables, with weights from 1 to 6 plus an independent

random noise N(0, ν2) where ν varies from 0.4 to 4. We used w0 = 0.5 and ∆w = 0.05 for the

VIF algorithm.

We computed the out-of-sample mean squared errors on the n = 1, 000 held-out samples.

To provide a better illustration of the performance of the five algorithms, we report the ratio

of the out-of-sample mean squared errors of other algorithms to that of VIF regression, i.e.,∑2n
i=n+1(yi − Xβ̂other)

2/
∑2n

i=n+1(yi − Xβ̂vif)
2. A ratio less than (greater than) one implies a

better (worse) performance of the algorithm compared to that of the VIF regression.

In general, VIF regression was slightly worse than stepwise regression and FoBa, but was

much better than GPS and Lasso. When the multicollinearity of the variables was weak (with

θ = 0.5), as shown in Figure 11, the VIF regression had almost as well performance as stepwise

regression and FoBa had (ratios were very close to one); GPS performed poorly when the signal

is strong but approached closer to VIF when the signal got weaker; Lasso was consistently worse

than VIF. When the multicollinearity of the variables was moderate (with θ = 0.9), Figure 12

shows that stepwise regression and FoBa could have more than 5% gain over the VIF regression;

the performance of Lasso remained the same, but the performance of GPS was almost identical

to that of VIF regression when the signal was weak. Thus, GPS benefited substantially from its

shrinkage in cases when the noise was large and the multicollinearity was strong. In a nutshell,

the VIF regression maintains its good performance under changing signal-to-noise ratios.

[Figure 11 about here.]

[Figure 12 about here.]

We also compared the Näıve algorithm without the VIF-correction under this setup in Fig-
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ure 13. Its performance was identical to that of VIF regression when θ = 0.5. This performance

under weak multicollinearity was guaranteed in the literature (See, e.g., Tropp 2004; Cai and

Wang 2010). However, when the multicollinearity was moderate (θ = 0.9), the Näıve algorithm

was worse than the one with VIF-correction, especially when the signal was relative strong.

These results again demonstrate the necessity of the VIF-correction in real applications, where

testing the mutual incoherence (weak multicollinearity) is NP-hard.

[Figure 13 about here.]

6.6 Robustness of w0 and ∆w

In our algorithm we have two parameters w0 and ∆w, which represent the initial wealth and the

investment. In this section we investigate how the choices of these two parameters may affect

the performance of our algorithm.

We took the first simulation scheme and simulated p = 500 independent predictors. The

response variable y was generated as the sum of q = 6 randomly sampled predictors plus a

standard normal noise. We then let the VIF regression algorithm choose models, with w0 varying

from 0.05 to 1 and ∆w varying from 0.01 to 1. We computed the out-of-sample mean squared

errors for each pair of (w0,∆w). The whole process was repeated 50 times.

Figure 14 illustrates the median, median absolute deviation (MAD), mean, and standard

deviation (SD) of these out-of-sample mean squared errors. We notice that the robust measures,

namely, median and MAD, of these out-of-sample errors were very stable and stayed the same

for almost all (w0,∆w) pairs. The less robust measures, mean and SD showed some variation for

the pairs with small values. With fixed ∆w, the out-of-sample performance did not change much

with different wo. In fact, since w0 will be washed out with an exponential decay rate in the

number of candidate variables being searched, it only matters for first few important variables,

if there are any.

The out-of-sample mean squared errors with large w0 and large ∆w tended to be small and
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had small variance. This is because o(n/ log(n)) variables can be allowed in the model without

over-fitting (See, e.g., Greenshtein and Ritov 2004). Hence, it will not hurt to include more

variables by relaxing w0 and ∆w for prediction purposes. Although the pair we used for all the

simulations, w0 = 0.5 and ∆w = 0.05, has a relatively higher mean squared errors, we are more

interested in its statistical ability of better controlling mFDR. The numerical experiments in this

section suggest that if prediction accuracy is the only concern, one could use larger w0 and ∆w.

[Figure 14 about here.]

7 REAL DATA

In this section, we apply our algorithm to three real data sets: the Boston Housing data, a set

of personal bankruptcy data, and a call center data set. The Boston data is small enough that

we are able to compare all the algorithms and show that VIF regression maintains accuracy

even with a substantially improved speed. The bankruptcy data is of moderate size (20,000

observations and 439 predictors, or on average over 27,000 predictors when interactions and

included), but interactions, which contribute significantly to the prediction accuracy, increase

the number of features to the tens of thousands, making the use of much of the standard feature

selection and regression software impossible. The call center data is yet larger, having over a

million observations and once interactions are included, over 14,000 predictors.

7.1 Boston Housing Data–Revisited

We revisited the Boston Housing data discussed in Section 4. Discussions on this dataset in

the literature have mostly dealt with 13 variables. To make the problem more demanding,

we included multiway interactions up to order three as potential variables. This expands the

scope of the model and allows a nonlinear fit. On the other hand, it produces a feature set

with high multicollinearity. We did a five-fold cross validation on the data; i.e., we divided the

data into five pieces, built the model based upon four of them, and tested the model on the
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remaining piece. The results are summarized in Table 4. Not surprisingly, stepwise regression

gave the best performance overall, since it tries to build the sparsest possible model with strong

collective predictability, and thus it will not suffer much from the multicollinearity. The strong

multicollinearity, however, caused trouble for GPS, the leader in the case without interactions.

One possible explanation is that due to the strong collinearity, GPS had a hard time making a

unified decision on the working penalty for the different folds. This variability in the penalties

caused a much larger variance in the model performances. As a result, the test errors tend to

be large and have a high variance, as shown in Table 4. The same problem happened to Lasso,

which could only do well with small p and weak collinearity. VIF regression did well in both

cases because it tried to approximate the searching path of stepwise regression; the slightly higher

errors were the price it paid for the substantially improved speed.

[Table 4 about here.]

7.2 Bankruptcy Data

We also applied VIF Regression to the bankruptcy data that was originally used in Foster and

Stine (2004). This sample data contains 20,000 accounts and 147 features, 24 of which are

categorical. It has substantial missing data. It is well understood that missing data serves to

characterize the individual account behaviors (Jones 1996); i.e., knowing which data are missing

improves model predictivity. Hence, instead of filling in with expected values based on the

observed data, we use an indicator for each of them as in Foster and Stine (2004). We also

decompose each of the 24 categorical variables that have categories (l) greater than two into l−1

dummy variables. Hence, in total, we have 439 features for our linear model. To dynamically

select interaction terms, we first apply VIF regression on the 439 linear features to get a baseline

subset C0. We then apply VIF regression with sub-sampling size m = 400 on the interaction

terms of the selected variables in C0 and all the features. The total number of candidate variables

we considered was thus p = (|C0|+ 1)× 439, as summarized in Table 5.
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[Table 5 about here.]

To gauge the classification performance, we perform a five-fold cross validation and employ

the 0-1 loss function to compute the in-sample and out-of-sample classification error for each fold.

We compared two different cutoff rules ξ1 = 1−#bankruptcies/nCV, where #bankruptcies

is the number of bankrupt accounts in sample, and ξ2 = 8/9.

We also compared with stepwise regression by generating 22,389 predictors and using stepwise

regression to pick variables. Given a time limit of 90 minutes, stepwise regression could only

select (on average) 4 variables compared to 400 features selected by VIF. We were not able to

run the other three algorithms on this data.

7.3 Call Center Data

The call center data we are exploring in the section are collected by an Israeli bank. On each day,

the number of calls to the customer center was counted every 30 seconds. This call value is the

dependent variable to be predicted. The data was collected from November 1st, 2006 to April

30th, 2008, 471 days in total (a few days are missing). Hence, we have in total n = 1, 356, 480

observations. Similar data sets have been investigated in Brown et al. (2005) and Weinberg et al.

(2007).

In order to have approximately normal errors, we performed a variance stabilization trans-

formation (Brown et al. 2005) to the number of counts N :

y =
√
N + 1/4.

The variables we are investigating for possible inclusion in the model include day of week

{xd}6d=1, time of day φft and ψft , and lags yt−k. For time of day, we consider Fourier transforms

φft = sin

(
2πf · t
ω

)
and ψft = cos

(
2πf · t
ω

)
,

where ω = 2, 880 the length of the daily period, and f varies from 1 to 210. We also consider
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interactions between day of week and time of day, {φft ·xd} and {ψft ·xd} as explanatory variables.

This results in a set of 2,054 base predictors and 12,288 interactions.

We again did a five fold cross validation to test our performance. Our VIF regression selected

on average 82 of the features and gave an in-sample R2 of 0.779 and an out-of-sample R2 of

0.623. The features selected were primarily interactions between the day of week and the time

of day as summarized in Table 6.

[Table 6 about here.]

Note that the in-sample performance is better than the out-of-sample performance because

of the autoregressive nature of this data. The feature selection criteria we used only guarantees

that there will be no overfitting for the case of independent observations. For non-independent

observations, the effective sample size is smaller than actual number of observations, and hence

adjusted criteria should be taken into account. We also considered adding auto-regressive effects,

i.e., lag variables {yt−k}, in the model; we gained both in-sample and out-of-sample R2 as high

as 0.92. However, in the typical use of models of call center data, estimating number of calls in

order to determine staffing levels, {yt−k} is not available at the time that the staffing decisions

need to be made, and so cannot be used for prediction. The speed and flexibility of our algorithm

enable us to efficiently extract informative relationships for such a large scale data.

8 DISCUSSION

Fast and accurate variable selection is critical for large-scale data mining. Efficiently finding good

subsets of predictors from numerous candidates can greatly alleviate the formidable computation

task, improve predictive accuracy, and reduce the labor and cost of future data collection and

experiment design. Among a variety of variable selection algorithms, stepwise regression is

empirically shown to be accurate but computationally inefficient; l1 and lε algorithms are less

accurate in highly sparse systems. In this paper, we proposed a hybrid algorithm, VIF regression,

that incorporates a fast and simple evaluation procedure. VIF regression can be adapted to
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various stepwise-like algorithms, including a streamwise regression algorithm using an α-investing

rule. Due to the one-pass nature of the streamwise algorithm, the total computational complexity

of this algorithm can be reduced to O(pn), as long as the subsample size m = O(n/q2), which can

be easily achieved in large-scale datasets. Furthermore, by employing an α-investing rule, this

algorithm can control mFDR and avoid over-fitting. Our experimental results demonstrate that

our VIF algorithm is substantially as accurate as, and is faster than other algorithms for large

scale data. Based on these results, we believe that the VIF algorithm can be fruitfully applied

to many large-scale problems. VIF regression code in R is available at the CRAN repository

(http://www.r-project.org/).
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Table 1: True |ρ|’s in the Boston Data. We added these variables into our multiple linear regression

model sequentially. Displayed are the |ρ| values when the corresponding variable is added in the model.

These |ρ|’s are computed using (6).

CRIM ZN INDUS CHAS NOX RM AGE

1.00 0.98 0.79 0.99 0.62 0.90 0.64

DIS RAD TAX PTRATIO B LSTAT

0.51 0.66 0.33 0.75 0.87 0.58
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Table 2: Summary of the average numbers of true discoveries, false discoveries, and estimated mFDR

using the five algorithms in the experiment with independent Gaussian features. The training set

contained 1,000 observations and p features, six of which were used to create the response variables.

This simulation was repeated 50 times.

Methods
Cases

VIF Stepwise FoBa GPS Lasso

true 6.0 6.0 6.0 6.0 5.86

p = 100 false 0.82 0.02 0.04 0.18 38.82

mFDR 0.049 0.001 0.002 0.011 0.710

true 6.0 6.0 6.0 6.0 5.38

p = 200 false 0.56 0.04 0.02 0.08 70.02

mFDR 0.034 0.002 0.001 0.005 0.820

true 6.0 6.0 6.0 6.0 5.66

p = 300 false 0.60 0.06 0.02 0.04 75.44

mFDR 0.036 0.004 0.000 0.002 0.828

true 6.0 6.0 6.0 6.0 5.50

p = 400 false 0.56 0.10 0.00 0.02 93.78

mFDR 0.034 0.006 0.000 0.001 0.858

true 6.0 6.0 6.0 6.0 5.48

p = 500 false 0.58 0.04 0.00 0.04 117.78

mFDR 0.035 0.002 0.000 0.002 0.884
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Table 3: Summary of the average numbers of true discoveries, false discoveries, and estimated mFDR

using the five algorithms in the experiment with jointly Gaussian features. The training set contained

1,000 observations and 200 features, six of which were used to create the response variables. The θ in

(17) were taken to be 0.1, 0.3, 0.5, 0.7 and 0.9. This simulation was repeated 50 times.

Methods
Cases

VIF Stepwise FoBa GPS Lasso

true 6.00 6.00 6.00 6.00 5.64

θ = 0.1 false 0.56 0.02 0.02 0.26 72.94

mFDR 0.034 0.001 0.001 0.016 0.823

true 6.00 6.00 6.00 6.00 5.54

θ = 0.3 false 2.04 0.02 0.02 0.12 68.40

mFDR 0.113 0.001 0.001 0.007 0.815

true 6.00 6.00 6.00 5.90 5.86

θ = 0.5 false 6.30 0.04 0.10 0.20 74.12

mFDR 0.282 0.002 0.006 0.012 0.824

true 6.00 6.00 6.00 6.00 5.84

θ = 0.7 false 13.20 0.04 0.16 0.60 64.58

mFDR 0.452 0.002 0.010 0.036 0.803

true 5.46 5.66 5.46 5.84 5.90

θ = 0.9 false 32.30 0.33 0.64 2.44 76.22

mFDR 0.676 0.019 0.038 0.133 0.827

36



Table 4: Boston Data: average out-of-sample mean squared error in a five-fold cross validation study.

Values in parentheses are the standard error of the these average mean squared errors.

Methods
Cases p

VIF Stepwise FoBa GPS Lasso

No Interactions 13 35.77 (26.25) 39.37 (26.11) 41.52 (33.33) 35.26 (19.56) 37.40 (24.67)

3-Interactions 403 26.57 (22.68) 26.39 (18.54) 31.62 (23.94) 95.75 (98.36) 96.76 (47.10)
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Table 5: Bankruptcy Data. The performance of VIF and stepwise regression on a five-fold cross valida-

tion.

Method #bankruptcies |C0| p time in.err1 out.err1 in.err2 out.err2

VIF 366 60.8 27,130 88.6 0.020 0.021 0.021 0.021

Stepwise - - 22,389 90 0.023 0.023 0.022 0.022

* time: CPU running time in minutes

* in.err1/out.err1: In-sample classification errors/Out-of-sample classification errors using ξ1

* in.err2/out.err2: In-sample classification errors/Out-of-sample classification errors using ξ2

* All numbers are averaged over the five folds.
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Table 6: Call Center Data. The performance of VIF and selected variables on a five-fold cross validation.

# of Selected Variables Performance

day of week time of day interactions in-sample R2 out-of-sample R2

Average 6 18.4 57.8 0.779 0.623

* All numbers are averaged over the five folds.
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Figure 1: Number of candidate variables examined (“capacity”) of five algorithms: VIF Regression,

Stepwise Regression, Lasso, FoBa, and GPS, within fixed time (in seconds). The algorithms were

asked to search for a model given n = 1, 000 observations and p candidate predictors. VIF regression

can run many more variables than any other algorithm: by the 300th second, VIF regression has run

100,000 variables, while stepwise regression, Lasso and FoBa have run 900, 700 and 600 respectively.

The implementation of GPS stopped when p is larger than 6,000; nevertheless, it is clear that VIF

regression can run on much larger data than GPS could. Details of the algorithms and models are given

in Section 6.

42



●

●●

●

●

●

●

●

●

Out−of−sample Error

vif step foba gps lasso

Figure 2: Out-of-sample mean squared errors of the models chosen by the five algorithms. The al-

gorithms were asked to search for a model given n = 1, 000 observations and p = 500 independently

simulated candidate predictors; mean squared errors of the five chosen models on a test set were com-

puted. We repeated this test 50 times and in the figure are the boxplots of these results. VIF regression

is as accurate as stepwise regression and FoBa, and much more accurate than GPS and Lasso.
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Figure 3: A schematic illustration of Proposition 1. Suppose y = βx + βnewxnew + ε. Let Px denote

the projector on x, then r = y− Pxy and P⊥x xnew = xnew − Pxxnew. In stepwise regression, the model

fit is the projection of r on P⊥x xnew while in stagewise regression, the model fit is the projection of r on

xnew. Note that the red dotted line is perpendicular to xnew and the red dashed line is perpendicular

to P⊥x xnew, γ̂new/β̂new = 〈xnew,P⊥x xnew〉2/‖xnew‖2‖P⊥x xnew‖2 = 〈xnew,P⊥x xnew〉 = ρ2.
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Figure 4: The biased t-ratio. We simulated y = x + xnew + N(0, 1) with sample size n = 30,

Corr(x,xnew) =
√

1− ρ2. For each ρ varying from 0 to 1, we computed both t-statistics of the es-

timated coefficient of xnew, tstage and tstep, from the two procedures. Shown in the plot is the ratio

tstage/tstep on ρ. It matches ρ well, as suggested by (9).
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Figure 11: Ratio of out-of-sample mean squared errors of the models chosen by the other four algorithms

to that of VIF regression. A ratio less than (greater than) one implies a better (worse) performance

of the algorithm compared to that of the VIF regression. The 200 features were simulated under the

second scenario with θ = 0.5 in Σ2.
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Figure 12: Ratio of out-of-sample mean squared errors of the models chosen by the other four algorithms

to that of VIF regression. A ratio less than (greater than) one implies a better (worse) performance

of the algorithm compared to that of the VIF regression. The 200 features were simulated under the

second scenario with θ = 0.9 in Σ2.
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Figure 13: Ratio of out-of-sample mean squared errors of the models chosen by the Näıve algorithms to

that of VIF regression. A ratio less than (greater than) one implies a better (worse) performance of the

algorithm compared to that of the VIF regression. The 200 features were simulated under the second

scenario with θ = 0.5 and θ = 0.9 in Σ2.
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Figure 14: Statistics of out-of-sample mean squared errors with various w0 and ∆w.
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