Problem statement

• The data: Orthonormal regression with lots of X's (possible lots of β 's are zero:

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j X_{ij} + \sigma Z_i, \qquad Z_i \sim N(0, 1),$$

• Equivalent form: Normal mean problem (known σ)

$$Y_i = \mu_i + Z_i, \qquad Z_i \sim N(0, 1) ,$$

- Unimodal prior for μ : $\pi \in \mathcal{M}$ iff
 - $-\pi(\mu)$ is a symmetric
 - $|\mu| \le |\mu'|$ implies $\pi(\mu) \ge \pi(\mu')$.
- Risk function: Kullback-Liebler divergence.

$$\mathcal{R}_n(\vec{\mu}, \pi) = \int \log \frac{P_{\vec{\mu}}(Y|X)}{P_{\pi}(Y|X)} P_{\vec{\mu}}(Y|X) dY$$

• Problem: Find a universal π .

Risk lower bounds

Theorem 1 For all n, for all $\vec{\mu}$, and $\pi \in \mathcal{M}$,

$$\mathcal{R}_n(\vec{\mu}, \pi) \ge c \sum_i \min\left(\mu_i^2 + \epsilon(\pi), \frac{1}{\mu_i^2} + \log\frac{\mu_i}{\epsilon(\pi)}\right)$$

But, how is $\epsilon(\pi)$ defined?

• Marginal distribution of Y_i :

$$\phi_{\pi}(y) = \int \phi(y-\mu)\pi(\mu)d\mu$$
.

• $\tau(\pi)$ says when ϕ_{π} 's tail gets fat relative to a nromal tail:

$$\tau(\pi) = \inf_{\tau} \{ \tau : \frac{\int_{\tau}^{\infty} \phi_{\pi}(y) dy}{\int_{\tau}^{\infty} \phi(y) dy} > 7.38... = e^2 \} .$$

• $\epsilon(\pi)$ measures how big this fat tail is:

$$\epsilon(\pi) = \int_{\tau(\pi)}^{\infty} \phi_{\pi}(y) dy$$
.

Knowing $\epsilon(\pi)$ is as good as knowing π

- Goal: find a single prior that can do almost as well as any unimodal prior with a fixed value of $\epsilon(\pi)$
- Spike and slab (Cauchy slab)

$$\hat{\pi}_{\epsilon}(\mu) = (1 - \epsilon)$$
 Spike + ϵ Cauchy

Theorem 2 For all n, for all $\vec{\mu}$, and $\epsilon \leq .5$,

$$\mathcal{R}_n(\vec{\mu}, \hat{\pi}_{\epsilon}) \leq 2\sum_i \min\left(\mu_i^2 + \epsilon, \frac{1}{\mu_i^2} + \log \frac{\mu_i}{\epsilon}\right)$$

Note: Same shape as lower bound. So it is only off by a constant factor.

Suppose p = 1. Our risk compared to the lower bound.

Figure 1: Risk of the Cauchy mixture $\hat{\pi}_{0.001}$ and the lower bound for the divergence attainable by any Bayes prior with $\epsilon(\pi) = 0.001$.

Figures 2 and 3: The ratio is bounded by 6 in these examples for $\epsilon = 0.01$ (left) and $\epsilon = .00001$ (right).

Empirical Bayes: Doing without ϵ

- Put prior on ϵ : $\epsilon \sim \text{Beta}(0, p)$
 - strongly biased towards "null" model
 - Puts most of the weight near $\epsilon = 0$
 - $P(\epsilon < 1/p) > .5$
 - Induces an exchangable prior over μ . call it $\tilde{\pi}$.

Theorem 3

$$\mathcal{R}_n(\vec{\mu}, \tilde{\pi}) \leq \omega_0 + \omega_1 \inf_{\pi \in \mathcal{M}} \mathcal{R}_n(\vec{\mu}, \pi)$$

Key point: $\tilde{\pi}$ has "almost" as good a risk as the best unimodal prior.

Do there exist other procedures that have ω_0 and ω_1 both constant?

- **Normal is bad:** A spike and normal slab has unbounded ω_1 (even if calibration is used like in George and Foster).
- **Tradition rules are bad:** AIC / BIC / C_p have unbounded ω_1 .
- **Risk inflation is better:** The best a testimator can achieve is $\omega_1 = O(\log p)$. (Donoho and Johnstone / Foster and George).
- Jefferies is competitive: If $\epsilon \sim \text{Beta}(.5,.5)$ then ω_1 is constant, but $\omega_0 = O(\log p)$. So still not linear.
- Adaptive rules work: Some adaptive procedures might work (nothing has been proven though):
 - Simes-like methods (Benjamini and Hochberg)
 - estimated degrees of freedom (Ye)
 - Empirical Bayes? (Zhang)

Everyone likes a good forecast.

- If you don't like the risk perspective, how about a forecasting perspective?
- Dawid's prequential approach
- Predict successive observations
- Use so-called "log-loss"
 - decision-maker gives a forecast of $P(\cdot)$

$$-Y$$
 is observed

$$- \text{Loss} = \log \frac{1}{P(Y)}$$

our total loss = $\underbrace{\text{intrinsic loss}}_{\mu \text{ known}} + O(\text{best Bayes excess})$

$$\sum_{i=1}^{n} \log \frac{1}{P_{\hat{\pi}}^{i-1}(Y_i)} = \underbrace{\sum_{i=1}^{n} \log \frac{1}{P_{\mu}^{i-1}(Y_i)}}_{O(n)} + O_p(\underbrace{\inf_{\pi \in \mathcal{M}} \mathcal{R}_n(\vec{\mu}, \pi)}_{O(\log n)})$$

Take home messages

- Don't worry about eliciting the shape of a IID prior for variable selection. It can be done well enough by automatic methods so the effort isn't justified.
- Bias your priors toward *not* including variables.
 - "Pretend" you have seen p insignificant variables before you start.
 - Make sure about 1/2 of your probability is on the "no signal" model.
- Cauchy priors are cool!

Adaptive Variable Selection

with

Department of Statistics, The Wharton School University of Pennsylvania, Philadelphia PA diskworld.wharton.upenn.edu Dean Foster & Bob Stine **Bayesian Oracles** November 3, 2002

Adaptive Variable Selection with Bayesian Oracles

Dean Foster & Bob Stine Department of Statistics, The Wharton School University of Pennsylvania, Philadelphia PA diskworld.wharton.upenn.edu

November 3, 2002

Abstract

We derive lower bounds for the predictive risk of regression models constructed with the aid of a class of Bayesian oracles, those that are unimodal and symmetric about zero. These bounds are rameters. We then construct a model whose predictive risk is Bayesian oracle. The procedure that achieves this performance We analyze the performance of adaptive variable selection with aid of a Bayesian oracle. A Bayesian oracle supplies the not asymptotic and obtain for all sample sizes and model pabounded by a linear function of the risk obtained by the best is related to an empirical Bayes estimator and those derived from statistician with a distribution for the unknown model parameters, here the coefficients in an orthonormal regression. step-up/step-down testing. the

Abstract

We analyze the performance of adaptive variable selection with the aid of a Bayesian oracle. A Bayesian oracle supplies the statistician with a distribution for the unknown model parameters, here the coefficients in an orthonormal regression. We derive lower bounds for the predictive risk of regression models constructed with the aid of a class of Bayesian oracles, those that are unimodal and symmetric about zero. These bounds are not asymptotic and obtain for all sample sizes and model parameters. We then construct a model whose predictive risk is bounded by a linear function of the risk obtained by the best Bayesian oracle. The procedure that achieves this performance is related to an empirical Baves estimator and those derived from step-up/step-down testing.