Problem statement

The data: Orthonormal regression with lots of X's

(possible lots of 3's are zero:

p
Y; =00+ ) 8;Xij +0Z;

j=1

Equivalent form: Normal mean problem (known o)

Z’LNN(Oa]-)o

Unimodal prior for u: m & M iff

— w(p) is a symmetric

— |p| < |4/| implies w(p) > w(p').

Risk function: Kullback-Liebler divergence.

P3(Y]X)

Rn (i, m) = /Iog Pr(Y]X)

Problem: Find a universal 7.

P(Y|X)dY .



Risk lower bounds

Theorem 1 For all n, for all i, and m € M,

Rn(ji, ™) > CZ min <,uz €(7T) —I— log e(w))

But, how is e(xw) defined?

e Marginal distribution of Yj:

or(y) = [ 6y — m(u)dp .

e 7(m) says when ¢;’'s tail gets fat relative to a nromal
tail:
0
d
Wy g g =2y
77 o(y)dy

() = iD_f{T

e ¢(m) measures how big this fat tail is:

«(m)= [ onw)dy



Knowing ¢(7) is as good as knowing =

e Goal: find a single prior that can do almost as well
as any unimodal prior with a fixed value of e(x)

e Spike and slab (Cauchy slab)

Te(pw) = (1 — €) Spike 4+ ¢ Cauchy

Theorem 2 For all n, for all i, and e < .5,

1

. . 1 ;
Rn (i, Te) < QZm'n (Mzz + €, — + l0g %)
)

Note: Same shape as lower bound. So it is only off by a
constant factor.



Suppose p = 1.
Our risk compared to the lower bound.

Figure 1: Risk of the Cauchy mixture mggg; and the
lower bound for the divergence attainable by any Bayes
prior with e(w) = 0.001.

Figures 2 and 3: The ratio is bounded by 6 in these
examples for e = 0.01 (left) and ¢ = .00001 (right).



Empirical Bayes: Doing without ¢

e Put prior on €: ¢ ~ Beta(0,p)
— strongly biased towards “null’ model
— Puts most of the weight near e =0
— P(e<1/p) > .5

— Induces an exchangable prior over u. call it 7.

o
Theorem 3

Rn(:ua 7?) S w0 + Wi inf Rn(ﬁa 7T)
TeM

Key point: @ has “almost” as good a risk as the best
unimodal prior.



Do there exist other procedures
that have wg and w; both constant?

Normal is bad: A spike and normal slab has unbounded
w1 (even if calibration is used like in George and
Foster).

Tradition rules are bad: AIC / BIC / C, have
unbounded w;.

Risk inflation is better: The best a testimator can
achieve is w1 = O(logp). (Donoho and Johnstone /
Foster and George).

Jefferies is competitive: If ¢ ~ Beta(.5,.5) then wq is
constant, but wg = O(logp). So still not linear.

Adaptive rules work: Some adaptive procedures might
work (nothing has been proven though):

e Simes-like methods (Benjamini and Hochberg)
e estimated degrees of freedom (Ye)

e Empirical Bayes? (Zhang)



Everyone likes a good forecast.

e If you don't like the risk perspective, how about a
forecasting perspective?

e Dawid’s prequential approach
e Predict successive observations

e Use so-called “log-loss”
— decision-maker gives a forecast of P(-)
— Y is observed
1
— Loss = log————

P(Y)

our total loss = jntrinsic loss +O(best Bayes excess)

U known
Slog— 1= log—_—7 )
log —— = log —— +O,( inf Ry(f, m)
i=1 Y = B () TEM g

o O(log n)



Take home messages

e Don’t worry about eliciting the shape of a IID prior
for variable selection. It can be done well enough by
automatic methods so the effort isn't justified.

e Bias your priors toward not including variables.

— "Pretend” you have seen p insignificant variables
before you start.

— Make sure about 1/2 of your probability is on the
“no signal’” model.

e Cauchy priors are cool!
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Abstract

We analyze the performance of adaptive variable
selection with the aid of a Bayesian oracle. A Bayesian
oracle supplies the statistician with a distribution for the
unknown model parameters, here the coefficients in an
orthonormal regression. We derive lower bounds for the
predictive risk of regression models constructed with the
aid of a class of Bayesian oracles, those that are
unimodal and symmetric about zero. These bounds are
not asymptotic and obtain for all sample sizes and
model parameters. We then construct a model whose
predictive risk is bounded by a linear function of the risk
obtained by the best Bayesian oracle. The procedure
that achieves this performance is related to an empirical
Bayes estimator and those derived from
step-up/step-down testing.
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