
Problem statement

• The data: Orthonormal regression with lots of X’s
(possible lots of β’s are zero:

Yi = β0 +
p∑

j=1

βjXij + σZi, Zi ∼ N(0,1) ,

• Equivalent form: Normal mean problem (known σ)

Yi = µi + Zi, Zi ∼ N(0,1) ,

• Unimodal prior for µ: π ∈M iff

– π(µ) is a symmetric

– |µ| ≤ |µ′| implies π(µ) ≥ π(µ′).

• Risk function: Kullback-Liebler divergence.

Rn(~µ, π) =
∫

log
P~µ(Y |X)

Pπ(Y |X)
P~µ(Y |X)dY .

• Problem: Find a universal π.
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Risk lower bounds

Theorem 1 For all n, for all ~µ, and π ∈M,

Rn(~µ, π) ≥ c
∑
i

min

(
µ2

i + ε(π),
1

µ2
i

+ log
µi

ε(π)

)

But, how is ε(π) defined?

• Marginal distribution of Yi:

φπ(y) =
∫

φ(y − µ)π(µ)dµ .

• τ(π) says when φπ’s tail gets fat relative to a nromal

tail:

τ(π) = inf
τ
{τ :

∫∞
τ φπ(y)dy∫∞
τ φ(y)dy

> 7.38... = e2} .

• ε(π) measures how big this fat tail is:

ε(π) =
∫ ∞
τ(π)

φπ(y)dy .

2



Knowing ε(π) is as good as knowing π

• Goal: find a single prior that can do almost as well

as any unimodal prior with a fixed value of ε(π)

• Spike and slab (Cauchy slab)

π̂ε(µ) = (1− ε) Spike + ε Cauchy

Theorem 2 For all n, for all ~µ, and ε ≤ .5,

Rn(~µ, π̂ε) ≤ 2
∑
i

min

(
µ2

i + ε,
1

µ2
i

+ log
µi

ε

)

Note: Same shape as lower bound. So it is only off by a

constant factor.
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Suppose p = 1.
Our risk compared to the lower bound.

Figure 1: Risk of the Cauchy mixture π̂0.001 and the

lower bound for the divergence attainable by any Bayes

prior with ε(π) = 0.001.

Figures 2 and 3: The ratio is bounded by 6 in these

examples for ε = 0.01 (left) and ε = .00001 (right).
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Empirical Bayes: Doing without ε

• Put prior on ε: ε ∼ Beta(0, p)

– strongly biased towards “null” model

– Puts most of the weight near ε = 0

– P (ε < 1/p) > .5

– Induces an exchangable prior over µ. call it π̃.

•

Theorem 3

Rn(~µ, π̃) ≤ ω0 + ω1 inf
π∈M

Rn(~µ, π)

Key point: π̃ has “almost” as good a risk as the best

unimodal prior.
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Do there exist other procedures
that have ω0 and ω1 both constant?

Normal is bad: A spike and normal slab has unbounded
ω1 (even if calibration is used like in George and
Foster).

Tradition rules are bad: AIC / BIC / Cp have
unbounded ω1.

Risk inflation is better: The best a testimator can
achieve is ω1 = O(log p). (Donoho and Johnstone /
Foster and George).

Jefferies is competitive: If ε ∼ Beta(.5,.5) then ω1 is
constant, but ω0 = O(log p). So still not linear.

Adaptive rules work: Some adaptive procedures might
work (nothing has been proven though):

• Simes-like methods (Benjamini and Hochberg)

• estimated degrees of freedom (Ye)

• Empirical Bayes? (Zhang)
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Everyone likes a good forecast.

• If you don’t like the risk perspective, how about a
forecasting perspective?

• Dawid’s prequential approach

• Predict successive observations

• Use so-called “log-loss”

– decision-maker gives a forecast of P (·)

– Y is observed

– Loss = log
1

P (Y )

our total loss = intrinsic loss︸ ︷︷ ︸
µ known

+O(best Bayes excess)

n∑
i=1

log
1

P i−1
π̂ (Yi)

=
n∑

i=1

log
1

P i−1
µ (Yi)︸ ︷︷ ︸

O(n)

+Op( inf
π∈M

Rn(~µ, π)︸ ︷︷ ︸
O(logn)

)
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Take home messages

• Don’t worry about eliciting the shape of a IID prior

for variable selection. It can be done well enough by

automatic methods so the effort isn’t justified.

• Bias your priors toward not including variables.

– “Pretend” you have seen p insignificant variables

before you start.

– Make sure about 1/2 of your probability is on the

“no signal” model.

• Cauchy priors are cool!
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Abstract

We analyze the performance of adaptive variable

selection with the aid of a Bayesian oracle. A Bayesian

oracle supplies the statistician with a distribution for the

unknown model parameters, here the coefficients in an

orthonormal regression. We derive lower bounds for the

predictive risk of regression models constructed with the

aid of a class of Bayesian oracles, those that are

unimodal and symmetric about zero. These bounds are

not asymptotic and obtain for all sample sizes and

model parameters. We then construct a model whose

predictive risk is bounded by a linear function of the risk

obtained by the best Bayesian oracle. The procedure

that achieves this performance is related to an empirical

Bayes estimator and those derived from

step-up/step-down testing.
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