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What is a Nash equilibrium?

• Cartoon definition of NE:

– Leroy Lockhorn: “I’m drinking because she is driving.”

– Loretta Lockhorn: “I’m driving because he is drinking.”

• Technical definition of NE:

– If everyone else will play the Nash equilibrium, then I should play

it also.

– Holds for all players in a game.

• Equilibrium of what process?



Calibration: A form of unbiasedness

”Suppose in a long (conceptually infinite) sequence of weather

forecasts, we look at all those days for which the forecast probability of

precipitation was, say, close to some given value p and then determine

the long run proportion f of such days on which the forecast event

(rain) in fact occurred. If f = p the forecaster may be termed well

calibrated.” Dawid [1982]

A minimal condition for performance

• On sequence: 0 1 0 1 0 1 0 ...

• A constant forecast of .5 is calibrated

• A constant forecast of .6 is not calibrated



Calibration: A form of unbiasedness

• see handout

• Left graph

– Bridge players

– Forecasts of winning a contract that was just bid.

– Expert bridge players are more calibrated than beginners

– Note: some experts play hands with 0 chance of winning!

• Right graph

– College students

– sports is more about utility than about probability. (I want my

team to win.)



Bridge players



College students



Learning in games

• Learning models for games:

– Two players repeatedly play a game

– Each views the sequence of the other person’s plays as data

– Each predicts what the other play will do

– Each then plays a best response to the prediction

• We will discuss the equilbrium resulting from calibrated learning

models



Traditional test functions for calibration

• Sequential prediction (t is time)

• Xt is forecast by pt

• Traditional calibration, means

1

T

T∑
t=1

(Xt − pt) w(pt) → 0

holds for all possible w().

– Note: The class of w() can be restricted to indicator functions.

– Oakes proved without randomization, calibration is impossible.

– With randomization calibration is possible.



New test functions

• Xt sequence to be forecast by pt

• Weak calibration, means

1

T

T∑
t=1

(Xt − pt) w(pt) → 0

for all w() which are continuous function.



Achieving weak calibration via polynomial regression

Algorithm:

• Fit the model

Xt =
d∑

i=0

βi pi
t + noise

on X1, . . . , XT−1 to estimate the β’s.

• Solve fixed point equation:

pT =
d∑

i=0

βip
i
T

(If no solution exists, use arbitary rule, say pT = 0.5.)

• Use pT to forecast XT .

Theorem: pT is approximately weakly calibrated.



Algorithm: Solve the fixed point equation

pT =
d∑

i=0

β̂ip
i
T

where the β̂’s are determined by a polynomial regression of X1, . . . , XT−1

on p1, . . . , pT−1.

Theorem: pT is approximately weakly calibrated.

Proof:

• Lemma (1991): regression does as well as any linear combination.

• Thus pT will predict as well as any polynomial of pT .

• Hence no polynomial change of pT will do better.

Trivia: I talked about this lemma the last time I was here (1988).



Games as a good application for paranoid data analysis

• Learning in games has extensive literature

• Both emprical and theoretical

• Two players repeatedly play a game

• Do they converge to playing an equilibrium?

• Typical learning setup:

– Player i uses pi,t to predict other’s play at the round t

– Player i computes best response distribution si(pi,t)

– Player i then randomly action Si from this distribution



Individual vs Public calibration

• Game setting for calibration

– Xi,t is the observable that player i cares about at time t

– pi,t is a forecast of Xi,t

• Individual calibration:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(pi,t) → 0

• Public calibration:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(~pt) → 0



Sharp vs. smooth best response

• si(pi,t) is the distrubtion player i will use for making a play at time t.

• Sharp best response means si maps to corners of simplex

– Used in orginal research on learning

– requires randomized forecasts to get convergence results

– Obviously pi,t must be protected from being leaked

• Smooth best reply restricts si(·) to be Lipschitz

– Only close to optimal

– Randomization is now in the play



Observables

• Game setup:

– Take Xi = S−i (i.e. all actions but player i)

– pi,t is forecast of Xi,t

• Individual calibration:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(pi,t) → 0

• Public calibration:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(~pt) → 0



Convergence

• Suppose players play a smooth best reply to forecast pi,t.

– Traditional calibration → correlated equilibria

– Public calibration → Nash equilibria

• Speed of convergence is related to dimension of the “Hilbert space”

of the testing functions

– For individual: dimension (1/ε)an

– For public: dimension is (1/ε)nan

– Hence convergence is slow in both cases.

• Need lower dimensional space, but what can be changed?



Proof: Public calibration converges to NE

• Truth ≈ prediction

– via calibration

• Truth is independent

– Given ~p each player is in fact playing independently

• ε-rationality

– ε-BR to prediction

– pi includes information about what all other players will do

• Independence + ε-rationality = ε-NE.



Utility estimation

• Take Xi,t to be the vector of potential payoffs

– ~S−i is the vector of everyone else’s play

– ui,t(k) = ui(k, ~S−i,t)

– Xi,t = (ui,t(1), . . . , ui,t(a))

• Calibration of utilities → correlated equilibria

• Public calibration of utilities → Nash equilibria



Conclusion: Today’s talk in historical context

Method Forecast probability Forecast utility

Least squares doesn’t converge doesn’t converge
(F. ’91)

Blackwell CE CE

Approach- Calibration No regret
ability (F. and Vohra, ’97) (F. and Vohra ’97)

(Hart and Mas-Colell ’00)

Exhaustive NE NE

search Hypothesis testing Regret testing
(F. and Young ’03) (F. and Young ’05)

(Germano & Lugosi ’05)

Public NE NE

methods Weak calibration Weak utility estimation
(Kakade and F. ’04) (Kakade and F. ’05)


