Calibration and Nash Equilibrium

Dean Foster

University of Pennsylvania

and

Sham Kakade

TTI

September 22, 2005

What is a Nash equilibrium?

- Cartoon definition of NE:
 - Leroy Lockhorn: "I'm drinking because she is driving."
 - Loretta Lockhorn: "I'm driving because he is drinking."
- Technical definition of NE:
 - If everyone else will play the Nash equilibrium, then I should play it also.
 - Holds for all players in a game.
- Equilibrium of what process?

Calibration: A form of unbiasedness

"Suppose in a long (conceptually infinite) sequence of weather forecasts, we look at all those days for which the forecast probability of precipitation was, say, close to some given value p and then determine the long run proportion f of such days on which the forecast event (rain) in fact occurred. If f=p the forecaster may be termed well calibrated." Dawid [1982]

A minimal condition for performance

- On sequence: 0 1 0 1 0 1 0 ...
- A constant forecast of .5 is calibrated
- A constant forecast of .6 is not calibrated

Calibration: A form of unbiasedness

- see handout
- Left graph
 - Bridge players
 - Forecasts of winning a contract that was just bid.
 - Expert bridge players are more calibrated than beginners
 - Note: some experts play hands with 0 chance of winning!
- Right graph
 - College students
 - sports is more about utility than about probability. (I want my team to win.)

Bridge players

College students

Learning in games

- Learning models for games:
 - Two players repeatedly play a game
 - Each views the sequence of the other person's plays as data
 - Each predicts what the other play will do
 - Each then plays a best response to the prediction
- We will discuss the equilbrium resulting from calibrated learning models

Traditional test functions for calibration

- Sequential prediction (t is time)
- X_t is forecast by p_t
- Traditional calibration, means

$$\frac{1}{T} \sum_{t=1}^{T} (X_t - p_t) \ w(p_t) \to 0$$

holds for all possible w().

- Note: The class of w() can be restricted to indicator functions.
- Oakes proved without randomization, calibration is impossible.
- With randomization calibration is possible.

New test functions

- ullet X_t sequence to be forecast by p_t
- Weak calibration, means

$$\frac{1}{T} \sum_{t=1}^{T} (X_t - p_t) \ w(p_t) \to 0$$

for all w() which are continuous function.

Achieving weak calibration via polynomial regression

Algorithm:

• Fit the model

$$X_t = \sum_{i=0}^d \beta_i \ p_t^i + \text{noise}$$

on X_1, \ldots, X_{T-1} to estimate the β 's.

Solve fixed point equation:

$$p_T = \sum_{i=0}^d \beta_i p_T^i$$

(If no solution exists, use arbitary rule, say $p_T = 0.5$.)

• Use p_T to forecast X_T .

Theorem: p_T is approximately weakly calibrated.

Algorithm: Solve the fixed point equation

$$p_T = \sum_{i=0}^d \widehat{\beta}_i p_T^i$$

where the $\widehat{\beta}$'s are determined by a polynomial regression of X_1,\ldots,X_{T-1} on p_1,\ldots,p_{T-1} .

Theorem: p_T is approximately weakly calibrated.

Proof:

- Lemma (1991): regression does as well as any linear combination.
- ullet Thus p_T will predict as well as any polynomial of p_T .
- ullet Hence no polynomial change of p_T will do better.

Trivia: I talked about this lemma the last time I was here (1988).

Games as a good application for paranoid data analysis

- Learning in games has extensive literature
- Both emprical and theoretical
- Two players repeatedly play a game
- Do they converge to playing an equilibrium?
- Typical learning setup:
 - Player i uses $p_{i,t}$ to predict other's play at the round t
 - Player i computes best response distribution $s_i(p_{i,t})$
 - Player i then randomly action S_i from this distribution

Individual vs Public calibration

- Game setting for calibration
 - $-X_{i,t}$ is the observable that player i cares about at time t
 - $p_{i,t}$ is a forecast of $X_{i,t}$
- Individual calibration:

(
$$\forall i$$
) $\frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(p_{i,t}) \to 0$

Public calibration:

$$(\forall i) \qquad \frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p_t}) \to 0$$

Sharp vs. smooth best response

- $s_i(p_{i,t})$ is the distrubtion player i will use for making a play at time t.
- ullet Sharp best response means s_i maps to corners of simplex
 - Used in orginal research on learning
 - requires randomized forecasts to get convergence results
 - Obviously $p_{i,t}$ must be protected from being leaked
- Smooth best reply restricts $s_i(\cdot)$ to be Lipschitz
 - Only close to optimal
 - Randomization is now in the play

Observables

• Game setup:

- Take $X_i = S_{-i}$ (i.e. all actions but player i)
- $p_{i,t}$ is forecast of $X_{i,t}$
- Individual calibration:

(
$$\forall i$$
) $\frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(p_{i,t}) \to 0$

Public calibration:

$$(\forall i)$$
 $\frac{1}{T} \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p_t}) \to 0$

Convergence

- ullet Suppose players play a smooth best reply to forecast $p_{i,t}$.
 - Traditional calibration → correlated equilibria
 - Public calibration → Nash equilibria
- Speed of convergence is related to dimension of the "Hilbert space" of the testing functions
 - For individual: dimension $(1/\epsilon)^{a^n}$
 - For public: dimension is $(1/\epsilon)^{na^n}$
 - Hence convergence is slow in both cases.
- Need lower dimensional space, but what can be changed?

Proof: Public calibration converges to NE

- Truth \approx prediction
 - via calibration
- Truth is independent
 - Given \vec{p} each player is in fact playing independently
- ϵ -rationality
 - $-\epsilon$ -BR to prediction
 - $-p_i$ includes information about what all other players will do
- Independence $+ \epsilon$ -rationality $= \epsilon$ -NE.

Utility estimation

- ullet Take $X_{i,t}$ to be the vector of potential payoffs
 - $-\vec{S}_{-i}$ is the vector of everyone else's play

$$-u_{i,t}(k) = u_i(k, \vec{S}_{-i,t})$$

$$-X_{i,t} = (u_{i,t}(1), \dots, u_{i,t}(a))$$

- Calibration of utilities → correlated equilibria
- Public calibration of utilities → Nash equilibria

Conclusion: Today's talk in historical context

Method	Forecast probability	Forecast utility
Least squares (F. '91)	doesn't converge	doesn't converge
Blackwell	CE	CE
Approach-	Calibration	No regret
ability	(F. and Vohra, '97)	(F. and Vohra '97)
		(Hart and Mas-Colell '00)
Exhaustive	NE	NE
Exhaustive search	NE Hypothesis testing	NE Regret testing
	Hypothesis testing	Regret testing
	Hypothesis testing	Regret testing (F. and Young '05)
search	Hypothesis testing (F. and Young '03)	Regret testing (F. and Young '05) (Germano & Lugosi '05)