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We propose a randomized strategy for selecting/combining forecasts that is better than the forecasts used to produce it
in a sense made precise in this paper. Unlike traditional methods this approach requires that no assumptions be made
about the distribution of the event being forecasted or the error distribution and stationarity of the constituent forecasts.

The method is simple and easy to implement.

his paper is concerned with the problem of choos-
ing from among a set of forecasts. It arises when
forecasts from different methods, models, or sources
are in conflict. One is then faced with the problem of
choosing the best or more accurate forecast. We use
the word forecast in a broad sense. We consider any
statement about the future that is falsifiable in the
sense of Popper (1968) to be a forecast. In other words,
it should be possible to verify to the satisfaction of
any observer that the forecast is either correct or in
error. Furthermore, this error should be measurable.
A number of writers (Makridakis and Winkler 1983,
Clemen and Winkler 1986, and Schnarrs 1984) have
argued that selecting the best forecast, a priori, is
usually difficult and perhaps impossible. For example,
one approach to selecting a forecast is to identify the
forecast that maximizes the decision maker’s expected
utility. This approach requires that the probability
distribution of the event being forecasted be specified.
Furthermore, even if this were known, the expected
utility calculation may be quite burdensome. As a
result, attention has shifted to methods for combining
forecasts. Ideally, this means eviscerating the models
behind each forecast, identifying their best features,
and then combining them to form a new model and
so a new forecast. (We point out that this is difficult
and often impossible to do.) The argument is that a
forecast that is produced by combining different fore-
casts will possess the best features of the individual
forecasts. In this way, the combined forecast should
outperform the individual forecasts. For an extensive
survey of methods for combining forecasts the reader
is referred to Clemen (1989). The most popular meth-
ods for combining forecasts involve taking a weighted
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average of the individual forecasts one has to choose
from. The methods differ in how the weights are
selected. Quite often the weights are selected to mini-
mize some measure of forecast error. These minimiz-
ing approaches require that assumptions be made
about the distribution of errors of the constituent
forecasts and their stationarity. Also, like the expected
utility approach described above, they can be com-
putationally burdensome. For a succinct and critical
review of these methods the reader should consult
Gupta and Wilson (1987).

This paper proposes a new method for combining
forecasts that is considerably more parsimonious in
the assumptions it makes as well as the effort required
to execute it. We call it the Mixing Method (MM for
short). More importantly, MM is provably better, in
a sense to be made precise later, than the individual
forecasts used to produce it. We know of no other
result of this kind in the literature on forecast
combinations.

In the next section we make precise the notion of
better alluded to above as well as introduce some
of the notation to be used throughout the paper.
Section 2 describes MM and discusses its properties,
and Section 3 contains some modifications of MM.
We conclude with an Appendix that contains proofs
of all the results stated in the body of this paper.

1. A DEFINITION OF BETTER

Forecasters or forecasting methods will be denoted by
capital letters. We assume that all forecasters have
agreed upon a choice of error measure. By an error
measure we mean a nonnegative real-valued function
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of what was forecast as well as what transpired, which
is nonincreasing with increasing accuracy of the fore-
cast. The error measure of a particular (forecast, event)
pair will simply be called the error of the forecast. The
error of a forecaster in period i will be denoted by a
lower case letter indexed by i. Thus, the error of
forecast A in period i is a; for example. The » period
average error of a forecaster will be denoted by
T(4, n). So, for example

M =

l
T(A, n) = "; a;.
=1

il

We list below two examples of error measures.

Example 1. Suppose that A4 is forecasting the demand
for widgets. Then one choice of error measure might
be:

a; = |{the amount that A forecasted would be de-
manded in period i} — {the amount actually
demanded in period i} |.

Alternatively, we might consider the square of the
difference above.

Example 2. Suppose that A is forecasting the optimal
objective function value of a minimization problem
and L is a lower bound to the optimal solution value.
Then one choice of g; is:

a; = {A’s forecast of optimal objective
function value} — L.

Suppose that 4 and B are two forecasters and C is
a forecast that is “produced” from A and B. We will
say that C is better than 4 and B if T(C, n) <
min{7(A4, n), T(B, n)} + ¢, where ¢, = 0 and ¢, —» 0
in probability as n — oo. Informally, the n period
average error of C is with high probability smaller
than the n period average error of both 4 and B as
n — o, This definition of better encompasses two
ideas. First, in comparing the accuracy of forecasts
it is reasonable to examine their average error in
order to assess their typical behavior. It therefore
seems appropriate that C would be preferred to 4
or B if T(C, n) < min{7(A4, n), T(B, n)}. However,
because of the nondeterministic nature of the prob-
lem it would be unreasonable to require that C
be deemed better than 4 and B only if

T(C, n) < min{T(4, n), T(B, n)}
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for all n. After all,
T(C, n) > min{1(4, n), T(B, n)}

for just one value of # is surely no reason to reject C
out of hand. Thus, the milder requirement we impose
in our definition of better.

In the next section we show how, given any two
forecasts, it is possible to construct a third forecast
that is better than both in the sense defined above.

2. THE MIXING METHOD

Let A and B be two forecasters. Denote by A; and B;
their forecasts for period i, respectively. The Mixing
Method constructs a forecaster C who operates as:

Cn+ 1

= A,+, with probability min(max[o, %’l} 1)

= B, otherwise,

where D(n) = T(B, n) — T(4, n) and 0.5 s s < 1. We
will say more about s later.

Note that the probability that MM picks A,.+; over
B, depends only on the previous history of A and
B’s errors. Furthermore, this probability changes as
we move from one period to the next. We are now in
a position to state the main results of the paper.

Theorem 1. If A and B are two forecasters with a;, b;
bounded for all i and C is defined by MM, then C is
better than A and B.

The number s affects the rate at which ¢, — 0 in
Theorem 1. It can be seen from the proof of Theorem
1 in the Appendix that the optimal choice of s is 0.5.
Notice that the only assumption being made is that
the errors of A and B are bounded from above. This
is a mild restriction because the quantities of most
things that are forecasted are finite. For example, the
amount of rain to fall on any day in any part of the
world will never be less than zero inches and is un-
likely to exceed 1,000 inches. If it did, it would be an
act of God and unlikely to be forecastable! Apart from
the requirement that errors are bounded, no assump-
tion is made about the nature of what is being fore-
casted or how 4 and B come by their forecasts. In this
sense, MM is a big departure from other approaches
to combining forecasts based on minimizing a mea-
sure of forecast error or maximizing expected utility.
These approaches require that assumptions be made
about the distribution of errors of the constituent
forecasts and their stationarity or the distribution of
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the event being forecasted. As these assumptions rarely
seem to hold, the use of such optimizing methods is
limited.

MM is unusual in the sense that it randomizes
between forecasts rather than the conventional ap-
proach of taking a weighted average of the individual
forecasts. This randomization is a natural conse-
quence of the scarcity of our assumptions. To see this,
imagine that nature selects a probability distribution
& for the event being forecasted. Our goal is to con-
struct from 4 and B a forecast C that is better than
either forecast. Recall now that we make no assump-
tion about ®. Hence, we have to construct a C better
than 4 and B for every possible choice of &, including,
of course, the most perverse and pathological. In
effect, in designing C, one must imagine that one is
in competition with nature.

It is natural to ask whether there is a version of MM
that involves taking a weighted average of A and B for
which the conclusion of Theorem 1 still holds. There
is, provided one restricts oneself to error functions
that are convex functions of |forecast — observed|.
For specificity, suppose that we have two forecasters
A and B forecasting the demand for widgets. Let W;
be the actual demand for widgets in period i. Denote
by S the forecast obtained by taking a convex combi-
nation of the forecasts of 4 and B respectively, i.e.,
Si=NA; + (1 — \;)B;forsome 0 < \; < |. Let R be
the forecast obtained by randomizing between 4 and
B, ie.,

R; = A; with probability \;
= B; with probability 1 — ;.

Suppose that forecast error is measured according to
f(|forecast — observed|), where f is nonnegative,
nondecreasing and convex (for example, |forecast —
observed|?) i.e., a; = f(| 4; — Wi|). Then,

si = fUSi = Wil) = fInd; + (1 = N)B; — W)
= fUNA: = W) + (1 = X)(B: — W)))
< Nai + (1 = Nby

which is the average error from using R. Hence, in
this situation the average error from randomizing is
larger than the error from using a weighted average.
Suppose that the A\’s are chosen in accordance with
MM. This would make R better than 4 and B
and would immediately imply that S is also better
than 4 and B. One can imagine an error function
that is neither a convex or concave function of
| forecast — observed|. Such error functions can arise
from economic considerations. In such cases, it is not

possible to make an argument like the one above to
produce an averaging version of MM.

An instance of when randomizing is to be preferred
to averaging is when the forecasts to be combined are
correlated. As a concrete instance suppose that in the
widget example mentioned earlier 4 and B have the
property that 4; and B; both exceed W, (actually it is
enough for this to happen most of the time). Suppose
also that our decision maker has an error function
that is concave and nondecreasing in |forecast —
observed |. This amounts to saying the decision maker
is a risk taker. Then, by an argument similar to the
earlier widget example, we can prove that the average
error of R is smaller than the error of S.

It is possible to extend MM so that it combines
three or more forecasts to produce a better forecast
without decreasing the rate at which ¢, — 0. However,
the proof is long and tedious. We describe instead a
quick scheme for combining forecasts that clearly
produces a forecast that is better than the constituent
forecasts. To combine three or more forecasts by MM
we proceed iteratively. For example, suppose there are
three forecasters, A, B, and E. First combine 4 and B
using MM to get C. Then combine C and E using
MM to get C’. It is easy to see that by virtue of
Theorem 1, C’ is better than A4, B, and E. Note that
this scheme is not associative. The lack of associativity
means that it is possible to produce more than one
forecast better than the constituent forecasts. This
would be a problem if one sought the ‘best’ of the
better forecasts. Because our objective is only to pro-
duce a better forecast this problem can be ignored.

Most of the work required to construct C from A
and B is in the effort to update and record the errors
of 4 and B. This can become quite burdensome if the
cost of obtaining a forecast from A and B is high. In
the next section, we show how to modify MM to avoid
having to obtain a forecast from 4 and B in every
period.

3. THE MODIFIED MIXING METHOD

Recall that the greatest investment of effort in deter-
mining C is in computing D(n). We want to modify
this to avoid having to get a forecast from 4 and B in
every period from the first to the current one. We do
this by using a statistical estimate of D(n), which we
call D(n), that is cheaper to compute.

Let r be a number between 2(1 — s) and | and
{a;}i2, be a sequence of independent random variables
uniformly distributed in [0, 1]. Let {X}~, be a
sequence of binomial random variables defined as:
X, = 1if a; < n"' = 0 otherwise.



The variable X; tells us whether to obtain a forecast
from A and B in period i or not. If X; = 1, thenA we
get a forecast, otherwise we do not. We define D(n)
to be

1 & Xda, = b)
n i§1 nr—] :
It should be clear that D(n) is cheapeg than D(n) to
compute. The next result tells us that D(#n) is both an
unbiased and accurate estimator of D(n). We assume
throughout that a; and b, are bounded. Define X to be

the o-field generated by all infinite sequences {a]
and {b}.

Theorem 2. E(D(n)| =) = D(n) and Var(D(n)|Z) =

O(n™).
The next theorem says that if we use D(n) in place

of D(n) in our construction of C the conclusion of
Theorem 1 still holds. More precisely, if

A

CrH—]

nD(n)+n°] I)

= A, with probability min(max{o, P

= B,  otherwise.

Then:

Theorem 3. If A and B are any two forecasts, then C
is better than A and B.

APPENDIX

To prove Theorem 1 we first need a purely technical
lemma. Before stating this lemma we introduce some
simplifying notation. Let (x, y)* = max(x, y) and
(x, )™ = min(x, ).

Lemma. Let F(t) be a real-valued function defined on
the interval [0, n), where n is a positive integer. Suppose
that there is a function f(s) such that

LIf() < 1Vs€e[0,nl,
ii. f(s) = f(Ls),
iii. F(1) = fb f(s) ds, F(n) <0

Then

I, =J; [(0, ﬂ%tf—l—> , 1} 1) di = 0(n®),

where 0 < a < 1 is fixed.

Proof. Let Z(¢t) =
Z(n) < 1. Hence

In=£‘f(z)dz+f z(tta)f(t dt +ff([)dt

(F(r) + t~)/2t~. Observe that
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where Pi={t:0<t<n Zt)=l}and P,={1: 0 <
t<sn 0<Z@1) < 1}.

By virtue of part iii we know that F is continuous.
Hence, we can partition P, into k, say, intervals [ p;,
g/l and P, into k' intervals [ p/, q/]. Note that although
the intervals do not coincide they share the same
endpoints—they are the set of zeros in [0, n] of
Z(t) — 1. Hence,

Z(p) = Z(q) = Zp!) = Z(qi) = 1 = F(p) = pr,
Fq)) = g7, F(p/) = pi* and F(g/) = g;“.
Thus,

¢ F
L=% f[mq,]f(l) dr + Ef z(lf,)f(t) dt

k K’

- £ (Fla) - Fp)) + 3 3 (FlaD) = RpD)
5 K1)

+ 2 b 200 () at.

If we order the intervals so that p., = ¢; and
Dl = q} it is easy to see that

k k’

_gl (Fg) — F(p)) + § (Fgi) —F(pi))

is a telescoping series and so is 0(#%). Thus:

I _O(na)+2f,q' D a0y ar

2

Now

f’F([)f(Z)dt>fq’ F(z)f(t) f«: a}:‘g?z
Fz(q ) _(F?p})
2q!« 2ple

Also,

f “ F(t)

i

"'F(z)f(t) i f aF(t)z

ta+l

fare”! Fz(q{) FXp!)  q/“—p!"
+f dt= - + = :
v 2 2g/*  2pl* 2

i

as | F(t)| < t~for t € [p/, q}]. Thus, we may conclude
that
“ K1) FXg/)  F(pi) ,
| e /0 di = =+ 0l = i)
1 ra
=4 (al" =) + 0(gr" = pi).
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Hence,

Kol
L= 00 + £ {7 (@l = pi* + 0(ar* = pI")}
= 0(n®).
Theorem 1. If A and B are two forecasters with a;, b,

are bounded for all i, and C is defined by MM, then C
is better than A and B.

Proof. To prove the theorem it is sufficient to show
that for any ¢ > 0 and 6 > 0 there is an # sufficiently
large subject to

Pr(T(C, n) — (T(4, n), T(B, n))” > §) < e.
From Markov’s inequality we deduce that:
Pr(T(C, n) = (T(4, n), T(B, n))” > 9)

< EII(C, n) = (T4, n), T(B, )]
> :

So, we need to bound E[T(C, n) — (1(4, n),
(B, n)].

Without loss of generality we may assume that
T(A, n) = T(B, n). Let

a iD() + i*\" .|
P"‘KO’ 2" )1}

and F(i) = i D(i). Let U be a uniform [0, 1] random
variable and define I(x) to be | if x < U and zero
otherwise. Then,

nT(C, n) =nT(B, n) + E:l (Cl,’+1 - bi+1)I(P1')
=0
—nT(B.m)+ 3. {(i+ DD+ 1)— iD()I(P)

=nT(B,n)+ E‘,l (F(i+ 1)=FQ)I(P).
=0

Now, extend F{(t) to the reals by setting F(¢) equal
to (¢t — LtD)FLel + 1) + (1 — ¢ + Le)F(Le)) if ¢ is
nonintegral. Then:

E(nT(C, n))

=nT(B, n) + Y (F(i + 1) — F(i))P;
i=0

= nT(B, n) +f0 [<o F(LJ;;—“—J-> , 1]_ dF(1)

= nT(B, n) + J; [(0, i (2: ’S> , 1}— dF(1)

todt
+0 (fo LtJ‘)

as |F(t) — F(lt))| < 1, |Le) — ¢] < 1 and |dF(t) < dt.
Now

ﬁi}{ =0 (n').
o t

Invoking the lemma above we deduce that
E(nT(C, n)) = nT(B, n) + 0(n®*) + O(n'™)
E(T(C, n)) = T(B, n) + 0(n**) + 0(n™)
E(T(C, n) — (T(4, n), T(B, n))")
= 0(n") + 0(n™).
Hence,
Pr(T(C, n) — (T(4, n), T(B, n))” > 9)

- 0(n*™") + 0(n™)
S

This proves the theorem.

Theorem 2. E(D(n)|2) = D(n) and Var(D(n)|Z) =
o(n™).

Proof. Let

Xi i_bi
E@b)

Then,

D(n) = D(n) + ’11 §1 m;.

So,

—EB(| Z)=Dn)+ T Emi12)

_ l" E(Xilz)(ai—bi)_ B
_D(n)+n,-=1{___—n"‘ (a; b,)}

=D+ X ((@—b)— (@~ b))

= D(n). As E(X;| Z) = E(X)).
From the definition of variance we see that
Var(D(n)| 2) = E[(D(n) — D(n))*| 2]

-qGEn) ]

=n? Y E(mmy|Z)
=

=n7?Y Em? Z)as Em|2)=0
i

and the m’s are conditionally independent given Z.



A straightforward calculation shows that E(m?|Z) <
(a; — b)* n'~" and so Var(D(n)| Z) = 0(n"™").

Theorem 3. If A and B are any two forecasters, then
C is better than A and B.

Proof. To prove this theorem it will be sufficient to
show that |7(C, n) — T(C, n) — 0 in probability
as n— o,

From the fact that the forecast errors are bounded

it follows that:
. Ass o\ + -
[(0’ i D(z)'s+z> ’ 1]
2i

iDG) +#\" |
‘KQ ﬁ&)’q’M

< % i'=s| D(i) = D(i)| M,

where M = max {a,, b}.
i=1

|Ci— Ci| =

Thus,

E(T(C, n) = T(C, n)|2)

™M =

E[(C ~ C)IZ]

S -
T

ﬁuc—@m)

j=

:I’—‘

I=

i"E(1 D(i) = D(i)||Z)

™M =

N
=
T

z": i [EYDG) — D())?| 22

=

S?!E
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I <

2 ll—.\‘ O(i——r/Z)

=0(n'"""). (by Theorem 2)

Since this last term is independent of X it follows that
E(T(C,n)— T(C,n)) =0(n'"*"). As s + r/2 > 1 it
follows that O(n'=~"/?) — 0 as n — . The result now
follows from an application of the Markov inequality.
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