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We propose a measure of riskiness of “gambles” (risky assets) that is
objective: it depends only on the gamble and not on the decision
maker. The measure is based on identifying for every gamble the
critical wealth level below which it becomes “risky” to accept the

gamble.

1. Introduction

You are offered a gamble (a “risky asset”) gin which it is equally likely
that you gain $120 or lose $100. What is the risk in accepting g? Is there -
an objective way to measure the riskiness of g? “Objective” means that the
measure should depend on the gamble itself and not on the decision
maker; that is, only the outcomes and the probabilities (the “distribu-
tion”) of the gamble should matter.

Such objective measures exist for the “return” of the gamble—its
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expectation, here E[g] = $10—and for the “spread” of the gamble—
its standard deviation, here ¢[g] = $110. While the standard deviation
is at times used also as a measure of riskiness, it is well known that it is
not a very good measure in general. One important drawback is that it
is not monotonic: 2 better gamble &, that is, a gamble with higher gains
and lower losses, may well have a higher standard deviation and thus
be wrongly viewed as having a higher riskiness.'

We propose here a measure of riskiness for gambles that, like the ex-
pectation and the standard deviation, is objective and is measured in
the same units as the outcomes; moreover, it is monotonic and has a
simple “operational” interpretation.

Let us return to our gamble g. The risk in accepting g clearly depends
on how much wealth you have. If all you have is $100 or less, then it is
extremely risky to accept g: you risk going bankrupt (assume there is
no “Chapter 11,” etc.). But if your wealth is, say, $1 million, then ac-
cepting g is not risky at all (and recall that the expectation of g is
positive). While one might expect a smooth transition between these
two situations, we will show that there is in fact a well-defined critical
wealth level that separates between two very different “regimes”: one in
which it is “risky” to accept the gamble and the other in which it is not.?

What does “risky” mean, and what is this critical level? For this purpose
we consider a very simple model, in which a decision maker faces an
unknown sequence of gambles. Each gamble is offered in turn and may
be either accepted or rejected; or, in a slightly more general setup, any
proportion of the gamble may be accepted.

We show that for every gamble g there exists a unique critical wealth
level R(g) such that accepting gambles g when the current wealth is
below the corresponding R(g) leads to “bad” outcomes, such as de-
creasing wealth and even bankruptcy in the long run; in contrast, not
accepting gambles gwhen the current wealth is below R{g) yields “good”
outcomes: no-bankruptcy is guaranteed, and wealth can only increase
in the long run.? In fact, almost any reasonable criterion—such as no-
loss, an assured gain, or no-bankruptcy—will be shown to Jead to exactly
the same critical point R(g). We will call R(g) the riskiness of the gamble
gsince it provides a sharp distinction between the “risky” and the “non-
risky” decisions. The risky decisions are precisely those of accepting
gambles g whose riskiness R(g) is too high, specifically, higher than the

1 Tuke the gamble g above; increasing the gain from $120 to $150 and decreasing the
loss from $100 to $90 makes the standard deviation increase from $110 to $120.

! We Bistinguish between the terms “risky” and “riskiness”: the former is a property of
decisions, the latter of gambles. Thus, accepting a gamble in a certain situation may be
a risky decision (or not), whereas the riskiness of a gamble is a measure that, as we shall see,
determines when the decision to accept the gambie is risky.

s All these occur with probability one (i.c., almast surely); sce Secs. Il and IV for the
precise statements.
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current wealth W (i.e., R(g) > W): they lead to bad outcomes and pos-
sibly bankruptcy. In short, a “phase transition” occurs at R(g).

Moreover, the riskiness measure R that we obtain satisfies all our initial
desiderata: it is objective (it depends only on the gamble), it is scale-
invariant and thus measured in the same unit as the outcomes,* it is
monotonic {increasing gains and/or decreasing iosses lowers the risk-
iness), it has a simple operational interpretation, and, finally, it is given
by a simple formula. We emphasize that our purpose is not to analyze
the most general investment and bankruptcy models, but rather to use
such simple operational setups as a sort of “thought experiment” in
order to determine the riskiness of gambles. _

In summary, what we show is that there is a clear and robust way to
identify exactly when it becomes risky to accept 2 gamble, and then

A

the riskiness of a gamble g is defined as the critical wealth below
which accepting g becomes risky.

The starting point of our research was the “economic index of risk-
iness” recently developed by Aumann and Serrano (2008) > While at-
tempting to provide an “operational” interpretation for it, we were led
instead to the different measure of riskiness of the current paper. A
detailed comparison of the two can be found in Section VI.A. Here we
will only mention that the “index” compares gambles in terms of their
riskiness, whereas our R is a “measure” that is defined separately for
each gamble® and, moreover, has a clear interpretation, in monetary
terms.” '

The paper is organized as follows. The basic model of no-bankruptcy
is presented in Section I, followed in Section III by the result that yields
the measure of riskiness. Section IV extends the setup and shows the
robustness of the riskiness measure; an illustrating example is provided
at the end of the section. The properties of the riskiness measure are
studied in Section V. Section VI discusses the literature and other per-
tinent issues, in particular, the work of Aumann and Serrano (2008) on
the “economic index of riskiness” and of Rabin (2000) on “calibration.”
The proofs are relegated to the Appendix.

*That is, the unit (*currency”™) in which the ocutcomes are measured does not matter:
rescalifig all outcomes by a constant factor >0 rescales the riskiness by the same A. Most
measures of riskiness satisfy this condition; see Secs. V1D, VLE.L, and VLE.9.

> This index was used in the technical report of PalaciosHuerta, Serrano, and Volij
(2004); see Aumann and Serrano (2008, 810n).

5 This explains the use of the different terms “index” and “measure.”

7 Such an interpretation is problematic for the Aumann-Serrano index, which is deter-
mined only up to a positive multiple.




788 JOURNAL OF POLITICAL ECONOMY
. The Basic Model .

This section and the next deal with the simple basic model; it is gen-
eralized in Section IV.

A, Gambles

A gamble gis a real-valued random variable® having some negative values—
losses are possible—and positive expectation, that is, P{g< 0]} >0 and
E[g] > 0. For simplicity® we assume that each gamble g has finitely many
values, say x,, X5, ..., %, With respective probabilities p;, ps, ..., pu
(where $,>0 and 3", p; = 1). Let G denote the collection of all such
gambles.

Some useful notation: L(g) := ~ min;x,> 0 is the maximal loss of g;
M(g) := max,x,> 0 is the maximal gain of g and |jgfl := max; x| =
max {M(g), L(g)} is the (£,) norm of g. One way to view g is that one
buys a “ticket” to g at a cost of L{g) > 0; this ticket yields various prizes
L{g) + x; with probability p, each (and so there is a positive probability
of getting no prize—when x, = —L(g)).

B.  Gambles and Wealth

Let the initial wealth be W,. At every period ¢ = 1, 2, ..., the decision
maker, whose current wealth we denote W, is offered a gamble g, €
& that he may either accept or reject. If he accepts g,, then his wealth
next period will be W, = W, + g;'° and if he rejects g, then W,, =

W. Exactly which gamble g, is offered may well depend on the period
t and the past history (of gambles, wealth levels, and decisions); thus,
there are no restrictions on the stochastic dependence between the
random variables g,. Let G denote the process (g),=s,. - We emphasize
that there is no underlying probability distribution on the space of
processes from which G is drawn; the setup is non-Bayesian, and the
analysis is “worstcase.” Thus, at time # the decision maker knows nothing
about which future gambles he will face nor how his decisions will
influence them.

To avoid technical issues, it is convenient to consider only finitely
generated processes; such a process G is generated by a finite set of
gambles G, = {g™, ¢®, ..., g} C & such that the gamble g, that is
offered following any history is a nonnegative multiple of some gamble

®We take g to be a random variable for convenience; only the distribution of g will
matter. P denotes “probability.”

® A significant assumption here is that of “limited liability™; see Sec. VLE.7.

19 That is, the gamble g, is realized, and with x denoting its outcome, W, = W+ =
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in G,; that is, it belongs to the finitely generated cone G, = {Ag: A2 0
and g € G,}." .

C. Critical Wealth and Simple Strategies

As discussed in the introduction, we are looking for simple rules that
distinguish between situations that are deemed “risky” and those that
are not: the offered gamble is rejected in the former and accepted in
the latter. Such rules—think of them as candidate riskiness measures—
are given by a “threshold” that depends only on the distribution of the
gamble and is scale-invariant. That is, there is a criticalwealth function Q
that associates t0 each gamble g e ¢ a number Q(g) in [0, ], with
Q(Ag) = AQ(g) for every A > 0, and which is used as follows: a gamble
g is rejected at wealth Wif W< Q(g), and is accepted if W2 Q(g). We
will refer to the behavior induced by such a function Qas a simple strategy
and denote it 55 Thus s, accepts g at wealth Q(g) and at any higher
wealth, and rejects g at all lower wealths: Q(g) is the minimal wealth at
which g is accepted. In the two extreme cases, Q(g) = 0 means that g
is always accepted (i.e., at every wealth W> 0), whereas Q(g) = o means
that g is always rejected.”?

D.  No-Bankrupicy

Since risk has to do with losing money and, in the extreme, bankruptcy,
we start by studying the simple objective of avoiding bankruptcy. Assume
that the initial wealth is positive (i.e., W, > 0) and that borrowing is not
allowed (so W,2 0 for all 1)."® Bankrupicy occurs when the wealth be-
comes zero'* or, more generally, when it converges to zero, that is,
lim,,. W, = 0. The strategy s yields no-bankruptcy for the process G and
the initial wealth W, if the probability of bankruptcy is zero, that is,
P[lim,... W, = 0] = 0. Finally, the strategy s guarantees no-bankrupicy if
it yields no-bankruptcy for every process G and every initial wealth W,.
Thus, no matter what the initial wealth is and what the sequence of |

"' The term Ag means that the values of g are rescaled by the factor A, whereas the
probabilities do not change (this is not to be confused with the “dilution” of Sec, V).

' See Sec. VI.E.6 and Sec. G in the Appendix for more general strategies.

'* If borrowing is allowed up to some maximal credit limit G then shift everything by
C (see also Sec. VI.C).

“ We emphasize that “bankruptcy” is to be taken in the simple, naive, and literal sense
of losing all the wealth (rather than the legal and regulatory sense—e.g., Chapter 11—
wher® losses may be limited and issues of agency, moral hazard, and risk shifting may
arise). '

PP = Py o is the probability distribution induced by the inidal wealth W], the process
G, and the strategy s
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gambles will be, the strategy s guarantees that the wealth will not go to
zero (with probability one).

III. The Measure of Riskiness

The result in the basic setup is

TuEOREM 1. For every gamble g € ¢ there exists a unique real
number R(g) > 0 such that a simple strategy s = s, with critical-wealth
function Q guarantees no-bankruptcy if and only if Q(g) 2 R(g) for every
gamble g ¢ & Moreover, R(g) is uniquely determined by the equation

1 : '
E[lo (1 +— )J = 0. (1)
S\ TR |

The condition Q(g) = R(g) .says that the minimal wealth level Q(g) at
which gis accepted must be R(g) or higher, and so gis for sure rejected
at all wealth levels below R(g), that is, at all W< R(g). Therefore, we
get

COROLLARY 1. A simple strategy s guarantees no-bankruptcy if and
only if for every gamble g e ¢

s rejects g at all W< R(g). (2)
Thus R(g) is the minimal wealth level at which g may be accepted;

as discussed in Section I, it is the measure of riskiness of g
Simple strategies s satisfying (2) differ in terms of which gambles are

accepted. The “minimal” strategy, with Q(g) = = for all g, never accepts

any gamble; the “maximal” one, with Q(g) = R(g) for all g, accepts g

as soon as the wealth is at least as large as the riskiness of g; these two:

strategies, as well as any strategy in between, guarantee no-bankruptcy
(see also proposition 6 in the Appendix, Sec. A). We emphasize that
condition (2) does not say when to accept gambles, but merely when a
simple strategy must rgject them, to avoid bankruptcy. Therefore, R(g)
may also be viewed as a sort of minimal “reserve” needed for g

Some intuition for the formula (1) that determines R will be provided
in the next section. To see how it is applied, consider gambles gin which
gaining a and losing b are equally likely (with 0 < b< a so that g € &);
- it is immediate to verify that E[log(l + g/R)} = 0 if and only if
(1 + a/R)(1 — §/R) = 1, and so R(g) = abd/(a — b) by formula (1). In
particular, for a = 120 and b = 100 we get R(g) = 600, and for
a = 105 and & = 100 we get R(g) = 2,100.

The proof of theorem 1 is relegated to the Appendix, Section A; an
illustrating example is provided in Section IV.

e AT VA AT S L
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IV. Extension: The Shares Setup

We will now show that the distinction made in the previous section
between the two “regimes” is robust and does not hinge on the extreme
case of longrun bankruptcy. To do so we slightly extend our setup by
allowing the decision maker to take any groportion of the offered gamble.
This results in a sharper distinction—bankruptcy on one side and wealth
growing to infinity on the other—which moreover becomes evident
already after finitely many periods. The intuitive reason is that it is now
possible to overcome short-term losses by taking appropriately small
proportions of the offered gambles (which is not the case in the basic
model of Sec. HI, where all future gambles may turn out to be too risky
relative to the wealth).

Formally, in this setup—which we call the shares setup—the decision
maker can accept any nonnegative multiple of the offered gamble g,
(ie., a.g, for some a,2 0) rather than just accept or reject g, (which
corresponds to a, € {0, 1}). Think, for instance, of investments that can
be made in arbitrary amounts (shares of equities). Let Q: G — (0, =)
be a criticalwealth function (we no longer allow Q@ =0 and
Q(g) = ) with Q(Ag) = AQ(g) for all A> 0. The corresponding simple
shares strategy s = s, is as follows: at wealth Q(g) one accepts g (i.e.,
« = 1), and at any wealth W one accepts the proportion & = W/Q(g)
of g; that is, the gamble ag that is taken is exactly the one for which
Qag) = W. The result is

THEOREM 2. Let s = 5, be a simple shares strategy with critical-
wealth function @ Then:

(i) lim,.. W = o« (almost surely (a.s.)) for every process G if and
only if Q(g) > R(g) for every gamble g e &

(i) lim.,W =0 (as) for some process G if and only if

Q(g) <R(g) for some gamble ge &

Theorem 2 is proved in the Appendix, Section B {proposition 8 there
provides a more precise result). Thus, our measure of riskiness R pro-
vides the threshold between two very different “regimes™ bankruptcy
(i.e., W,— 0 as., when the riskiness of the accepted gambles is higher
than the wealth), and infinite wealth (i.e., W, — = a_s., when the riskiness
of the accepted gambles is lower than the wealth). As a consequence,
one may replace the “no-bankruptcy” criterion with various other cri-
teria, such as:

* nodoss: liminf,., W2 W] (as.);
* bounded loss: liminf,_ . W2 W, — C (a.s.) for some C< W, or
lim inf,... W, 2 ¢W, (a.s.) for some ¢> 0;
* ¢ assured gain: liminf W2 W, + C (as.) for some C>0, or
liminf,_, W2 (1 + )W, (as.) for some ¢> 0;
* infinite gain: lim_,, W, = « (a.s.).
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Moreover, in the no-bankruptcy as well as any of the above conditions,
one may replace “almost surely” (a.s.) by “with positive probability.” For
each one of these criteria, theorem 2 implies that the threshold is the
same: it is given by the riskiness function R. For example:

CoroLLARY 2. A simple shares strategy s, guarantees no-loss if
Q(g) >R(g) for all g and only if Q(g) 2 R(g) for all g

By way of illustration, take the gamble g of Section I in which it is
equally likely to gain $120 or lose $100, and consider the situation in
which one faces a sequence of gambles g, that are independent draws
from g Let g:= Q(g) be the critical wealth that is used for g; then in
each period one takes the proportion a, = W/ of g.. Therefore,

Ws = Wt g = W ()= (1 +2g).

and so W, = W,IT.., (1 + (1/)g.)- Assume first that Q(g) = $200; then
1 + (1/9)g, equals either 1 + 120/200 = 1.6 or 1 - 100/200 = 0.5 with
equal probabilities (these are the relative gross returns of gwhen the wealth
is $200; in net terms, a gain of 60 percent or a loss of 50 percent). In
the long run, by the Law of Large Numbers, about half the time the
wealth will be multiplied by a factor of 1.6 and about half the time by a
factor of 0.5. So, on average, the wealth will be multiplied by a factor of
v = V1.6 - 0.5 <1 per period, which implies that it will almost surely
converge to zero:'® bankruptcy! Now assume that we use Q(g) =
$1,000 instead; the relative gross retums become 1 + 120/1,000 =
1.12 or 1 = 100/1,000 = 0.9, which yield a factor of ¥y = {1.12 - 0.9 >
1 per period, and so the wealth will almost surely go to infinity rather
than to zero. The critical point is at (g) = $600, where the per-period
factor becomes ¥ = 1; the riskiness of gis precisely R(g) = $600.”

Indeed, accepting g when the wealth is less than $600 yields “risky”
returns—returns of the kind that if repeated lead in the long run to
bankruptcy; in contrast, accepting g only when the wealth is more than
$600 yields returns of the kind that guarantee no-bankruptcy and lead
to increasing wealth in the long run. We point out that these conclusions
do not depend on the independent and identically distributed (i.i.d.)
sequence that we have used in the illustration above; any sequence of
returns of the first kind leads to bankruptcy, and of the second kind,
to infinite growth.

The criteria up to now were all formulated in terms of the limit as ¢
goes to infinity. However, the distinction between the two situations can

, " Indeed, W,,, will be close to W(1.6)7*(0.5)"* = Wy'—_.0. Incuitively, to offset a loss
of 50 percent, it needs to be followed by a gain of 100 percent (since the basis has changed);
a 60 percent gain does not suffice.

"It is easy to see that the growth factor is larger than 1 if and only if the expectation
of the log of the relative gross returns is larger than 0; this explains formula (1).
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be seen already after relatively few periods: the distribution of wealth
will be very different. In the example above, the probability that there
is no loss after ¢ periods (i.e., P[W,,, 2 W]) is, for ¢ = 100, about 0.027
when one uses Q(g) = $200 and about 0.64 when Q(g) = $1,000; these
probabilities become 107 and 0.87, respectively, for ¢ = 1,000. In terms
of the median wealth, after : = 100 periods, it is only 0.000014 times
the original wealth when Q(g) = $200, in contrast to 1.48 times when
Q(g) = $1,000 (for ¢ = 1,000, these numbers are 107*® and 53.7, re-
spectively).’®

V. Properties of the Measure of Riskiness

The riskiness measure enjoys many useful properties; they all follow
from formula (1). A number of basic properties are collected in prop-
. osition 1 below, following which we discuss two issues of particular in-
terest: stochastic dominance and continuity.

Some notation: Given 0 < A < 1 and the gamble g that takes the values
Xy, X9, .., %, with respective probabilities p,, po, ..., pn, the A-dilution
of g denoted N % g, is the gamble that takes the same values x,, x,,

.., X, but now with probabilities Ap,, Aps, ..., Ap,, and takes the value
0 with probability 1 — \; that is, with probability A the gamble g is per-
formed, and with probability I — N there is no gamble.

ProrostTioN 1.  For all gambles g, 4 e &:"°

(i) Distribution: If g and k have the same distribution, then
R{g) = R(h).

(i) Homogeneity: R(Ag) = AR(g) for every A> 0.

(iii) Maximal loss: R(g) > L(g).

(iv) Subadditivity. R(g + k) <R(g) + R(h). ‘

(v} Convexity. R(hg+ {1 —NA) SAR(g + 1~ NR(#) for every
0<A<l.

(vi) Dilution: R(A x g} = R(g) forevery 0 <A <1,

(vii) Independent gambles: If g and h are independent random vari-
ables, then min (R(g), R(#)} <R(g+ k) <R(g) + RA).
Moreover, there is equality in (iv) and (v) if and only if g and & are

proportional (i.e., # = Ag for some A > 0).

Thus, only the distribution of a gamble determines its riskiness; the
riskiness is always larger than the maximal loss (which may be viewed
as an “immediate oneshot risk™); the riskiness measure is positively
homogeneous of degree one and subadditive, and thus convex; diluting

"8 Tuking Q(g) = $500 and Q(g) = $700 (closer to R{g) = $600) yields after ¢ =
1,000 periods a median wealth that is 0.018 and 7.66, respectively, times the original wealth.
¥ In (iv), (v), and {vii}, g and % are random variables defined on the same probability

space.
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a gamble does not affect the riskiness;>® and the riskiness of the sum of
independent gambles lies between the minimum of the two riskinesses
and their sum.

Proofs can be found in the Appendix, Section C; see proposition 9
there for sequences of i.i.d. gambles.

. A.  Stochastic Dominance

There are certain situations in which one gamble gis clearly “less risky”
than another gamble h. One such case occurs when in every instance
the value that g takes is larger than the value that A takes. Another
occurs when some values of h are replaced in g by their expectation
(this operation of going from g to A is called a “mean-preserving
spread”). These two cases correspond to “first-order stochastic domi-
nance” and “second-order stochastic dominance,” respectively (see
Hadar and Russell 1969; Hanoch and Levy 1969; Rothschild and Stiglitz
1970, 1971).

Formally, a gamble g firstorder stochastically dominates 2 gamble &,
which we write g SD, &, if there exists a pair of gambles g’ and &' that
are defined on the same probability space such that: gand g have the
same distribution; k and /' have the same distribution; and g’ 2 4’ and
g’ # K. Similarly, g second-order stochastically dominates h, which we write
g SD, h, if there exist g’ and & as above, but now the condition
“g! > K™ is replaced by “g’2 A" and }' is obtained from A" by a finite
sequence of mean-preserving spreads, or as the limit of such a
sequence.”

The importance of stochastic dominance lies in the fact that, for
expected-utility decision makers (who have a utility function u on out-
comes and evaluate each gamble g by E[u(g)]),” we have the following:
g SD, & if and only if g is strictly preferred to h whenever the utility

function u is strictly increasing; and g SD; 4 if and only if g is strictly’

preferred to & whenever the uiility function « is also strictly concave.

Our riskiness measure is monotonic with respect to stochastic dom-
inance: a gamble that dominates another has a lower riskiness. In con-
wrast, this desirable property is not satisfied by most existing measures
of riskiness (see Sec. VL.D). '

PropPoSITION 2. If g firstorder stochastically dominates & or if g
second-order stochastically dominates %, then R(g) <R(h).

Proposition 2 is proved in the Appendix, Section D.

* [ our setup of sequences of gambles, dilution by a factor A translates into “rescaling
time” by a factor of 1/X (e.g., A = 1/2 corresponds to being offered a gamble on average
*once every two periods). Such 2 rescaling does not affect the long-run outcome, which
explains why the riskiness does not change.
2 O, if the wealth Wis taken into account, by E[u(W+ g}].

B S T B R I R e e
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B.  Continuity ,

The natural notion of convergence for gambles is convergence in dis-
tribution; after all, only the distribution of the gamble determines the
riskiness; see proposition 1(i). Roughly speaking, gambles are close in
distribution if they take similar values with similar probabilities. For-
mally, a sequence of gambles (g n=12... C G converges in distribution to
. agamble g € &, denoted g, 3 g if E[¢(g,,)] -» E[¢(g)] for every bounded
and uniformly continuous real function ¢ (see Billingsley 1968). We get
the following result:

ProprosITION 3.  Let (g,),.12.. C & be a sequence of gambles with
uniformly bounded values, that xs there exists a finite X such that
lg.| £ X for all n. If g,,—vge G and L(g,) = L(g) as n—, then
R{g) > R(g) as n—> =,

Proposition 3 is proved in the Appendix, Section E, as a corollary of
a slightly more general continuity result (proposition 10).

To see that the condition L(g,) = L(g) is indispensable, let g, take
the values 2, —1, and —3 with probabilities (1/2)(1 — 1/5), (1/2)}(1 —
1/n), and 1/n, respectively, and let g take the values 2 and —1 with
probabilities 1/2 and 1/2. Then g.3gbutL(g) =3 # 1 = L(g),and
R(g,) >3 + 2 = R(g).

Though at first sight the discontinuity in the above example may seem
disconcerting, it is nevertheless natural, and our setup helps to clarify
it.® Even if the maximal loss L{g,) has an arbitrarily small—but positive—
probability, it still affects the riskiness. After all, this maximal loss will
eventually occur, and to avoid bankruptcy the wealth must be sufficiently
large to overcome it. The fact that the probability is small implies only
that it may take a long time to occur. But occur it will!

Interestingly, a similar point has been recently made by Taleb (2005):
highly improbable events that carry a significant impact (called “black
swans”) should not be ignored. One may make money for a very long
time, but if one ignores the very low probability possibilities, then one
will eventually lose everything.

V1. Discussion and Literature

This section is devoted to several pertinent issues and connections to
the existing literature. We start with the recently developed “index of
riskiness” of Aumann and Serrano (2008), continue with matters con-
cerning utility, risk aversion, wealth, and the “calibration” of Rabin
(2000}, discuss other measures of riskiness, and conclude with a number
of general comments.

2 Other measures of riskiness, such as that of Aumann and Serrano (2008), are con-
tinuous even when L{g,) does not converge to L(g).
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A, Aumann and Serrano’s Index of Riskiness

Aumann and Serrano (2008) have recently developed the economic index
of riskiness, which associates to every gamble g e ¢ a unique number
R*(g) >0 as follows.” Consider the decision maker with constant
(Arrow-Pratt) absolute risk aversion coefficient « (his uiility function is
thus* u(x) = — exp (—ax)) who is indifferent between accepting and
‘rejecting g put R**(g) = 1/a. The following equation thus defines
R*(g) uniquely:

dor(- il =1 ®

Aumann and Serrano’s approach is based on a duality axiom, which
essentially asserts that less risk-averse decision makers accept “riskier”
gambles.® Together with positive homogeneity of degree one, this leads
to the above index R*S,

Comparing this to our approach, we note the following distinctions:

(i) R*is an index of riskiness, based on comparing the gambles
in terms of their riskiness. Our R is a measure of riskiness, defined
for each gamble separately (see Sec. VLE.2).

(ii) R*is based on risk-averse expected-utility decision makers. Our
approach completely dispenses with utility functions and risk
aversion, and just compares two situations: bankruptcy versus
no-bankruptcy, or, even better (Sec. IV), bankruptcy versus in-
finite growth, or loss versus no-loss, and so forth.

(iif) R*®is based on the critical level of risk aversion, whereas our
R is based on the critical level of wealth. Moreover, the com-
parison between decision makers in Aumann and Serrano
(2008)—being “more” or “less” risk averse—must hold at all
wealth levels. We thus have an interesting “duality”: R*S looks
for the critical risk aversion coefficient regardless of wealth,
whereas R looks for the critical wealth regardless of risk
aversion.

7 This index was used in the technical report of Palacios-Huerta et al. {2004); see
Aumann and Serrano (2008, 810n).

™ This is the class of CARA utility functions; exp (x} stands for &,

™ For an alternative approach that is based on a simple “riskiness order,” see Hart (2008).

PR R e
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bl

(iv) Our approach yields a measure R whose unit and normalization
are well defined, whereas Aumann and Serrano are free to
choose any positive multipie of R*S. Moreover, the number
R{g) has a clear operational interpretation, which, at this point,
has not yet been obtained for R**(g). In fact, our work originally
started as an attempt to provide such an interpretation for
R*(g), but it led to a different measure of riskiness.

The two approaches thus appear quite different in many respects,
both conceptually and practically. Nevertheless, they share many prop-
erties (compare Sec. V above with Sec. V in Aumann and Serrano
2008).*® Moreover, they turn out to yield similar values in many exam-
ples. To see why, rewrite (3) as E[1 ~ exp (—~g/R**(g))] = 0, and compare
it to our equation (1}, E[log (1 + g/R(g))] = 0. Now the two relevant
functions, log (1 + x) and 1 — exp (—x), are close for small x: their Taylor
series around x = 0 are

log (1 + %) = x— §a% + 3x° — 3x* + -
and
1 —exp(—x) = x—%x2+% 3—%,‘44.....

The two series differ only from their third-order terms on; this suggests
that when g/R(g) is small—that is, when the riskiness is large relative
to the gamble—the two approaches should yield similar answers.

To see this formally, it is convenient to keep the gambles bounded,
from above and from below, and let their riskiness go to infinity (recall
that both R and R*® are homogeneous of degree one); as we will see
below, this is equivalent to letting their expectation go to zero. The
notation a, ~ b, means that a,/b, 1 as n— =,

ProOPOSITION 4.  Let (g,),-12.. C & be a sequence of gambles such
that there exist K< ® and « > 0 with |g,| < Kand Efjg,|] 2 « for all n.
Then the following three conditions are equivalent:

(i) E[g,])—0asn—c

(i) R{g,) 2 asn—x,

(i) R*S(g,) P> as n—o
Moreover, in this case R{g,) ~ R**(g,) as n— .

Thus, when the expectation goes to zero, both measures go to infinity;
and if one of them goes to infinity, then the other does so too—and,
moreover, they become approximately equal. Proposition 4 is proved
in the Appendix, Section F. We note here another general relation that

* The only differences concern continuity and independent gambles.
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has been obtained in Aumann and Serrano (2008):¥ for every g € G,
—L(g) < R*(g) — R(g) < M(g). 4)

At this point one may wonder which riskiness measure or index could
be said to be “better.” Our view is that there is no definite answer. Each
one of them captures certain aspects of riskiness; after all, a whole
distribution is summarized into one number (a “statistic”). Further re-
search should help clarify the differences and tell us when it is appro-
priate to use them.®

B, Utility and Risk Aversion

Consider an expected-utility decision maker with utility function u,
where u(x) is the utility of wealth x The utility function u generates a
strategy s = s* as follows: accept the gamble g when the wealth is Wif
and only if by doing so the expected utility will not go down, that is,

accept g at Wif and only if E[u(W+ g} = u(W); {5)

equivalently, the expected utility from accepting g at Wis no less than
the utility from rejecting g at W.

A special case is the logarithmic utility u(x) = log x (also known as the
“Bernoulli utility”). The riskiness measure R turns out to be character-
ized by the following property. For every gamble g, the logarithmic utility
decision maker is indifferent between accepting and rejecting g when
his wealth W equals exactly R(g), and he strictly prefers to reject g at
all W<R(g and to accept gat all W> R(g); this follows from (1) and
lemma 1 in the Appendix (Sec. A) since

Ellog (1 + g/R{g)] = Ellog(R(g + g)] — log (R(g).

Therefore, the condition (2) of rejecting a gamble when its riskiness is
higher than the current wealth, that is, when W< R(g), can be restated
as follows: reject any gamble that the logarithmic utility rejects.

The logarithmic utility is characterized by a constant relative risk aversion
coefficient of 1 (i.e., v, (%) := —xu’(x)/u'(x) = 1forall x> 0). More gen-
erally, consider the class CRRA of utility functions that have a constant
relative risk aversion coefficient, that is, v,(x) = ¥ > 0 for all x> 0; the
corresponding utility functions are u,(x) = x'"%(1 — ) for ¥ # 1 and
u,(x) = logx for ¥ = 1. It can be checked that these are exactly the
utility functions for which the resulting strategy s* turns out to be a

* Aumann and Serrano (2008) show that a decision maker with log utility accepts gat
all "'W> R*(g) + L(g) and rejects gat all W< R*(g) — M(g), and so (see Sec. VLB below)
R{g} must lie between these two bounds.

For a similar point, which one is “better”™—the mean or the median? (For an illu-
minating discussion on “multiple solutions,” see Aumann 1985, esp. Sec. 4.)




[
OPERATIONAL MEASURE OF RISKINESS 799

simple strategy (i.e., with a critical-wealth function that is homogeneous;
use for instance corollary 3 and lemma 4 in Sec. X.A of Aumann and
Serrano 2008). Since a higher risk aversion means that more gambles
are rejected, our main result (see corollary 1) yields the following: no-
bankruptcy is guaranteed for a CRRA wutility u, if and only if the relative risk
aversion coefficient «y satisfies y 2 1.7

Given a general utility function u (which is not necessarily CRRA, and
therefore the resulting strategy s* is not necessarily simple), assume for
simplicity that the relative risk aversion coefficient at 0 is well defined;
that is, the limit y,{0) := Iim_: v,(x) exists. Then proposition 11 in the
Appendix (Sec. G) yields the following result: v,(0) > 1 guarantees no-
bankruptcy, and guaranteed no-bankruptcy implies that 7,(0) 2 1LY 1t
is interesting how the conclusion of a relative risk aversion coefficient
of at least 1 has been obtained from the simple and basic requirement
of no-bankruptcy or any of the alternative criteria in Section v

C.  Wealth and Calibration

We come now to the issue of what is meant by “wealth.” Our basic setup
assumnes that the decision maker wants to avoid bankruptcy (ie., W~
0). This can be easily modified to accommodate any other minimal level
of wealth W that must be guaranteed: just add W throughout. Thus,
rejecting g at W when W< W+ R(g) guarantees that W2 Wor all ¢
and P[lim,., W, = W] = 0 (this follows from proposition 6 in Sec. A
of the Appendix).

If, say, Wis the wealth that is needed and earmarked for purposes
such as living expenses, housing, consumption, and 50 on, then R(g)
should be viewed as the least “reserve wealth” that is required to cover
the possible losses without going bankrupt, or, more generally, without
going below the minimal wealth level W. That is, R(g) is not the total
wealth needed, but only the additional amount above W. Therefore, if
that part of the wealth that is designated for no purpose other than
taking gambles—call it “gambling wealth” or “risky investment wealth™—
is below R(g), then g must be rejected.

This brings us to the “calibration” of Rabin {2000). Take a risk-averse

® [t is interesting how absolute risk aversion and CARA utilities have come out of the
Aumann and Serrano (2008) approach, and relative risk aversion and CRRA utilities out
of ours—in each case, as a resulf and not an assumption.

% The knife-edge case of v,(0) = 1 can go cither way: consider #!{») = logx and

w{(x) = exp{—V—~log#)

for small x

%1 Many—though not all—empirical studies indicate relative risk aversion coefficients
larger than 1 (see, e.g., PalaciosHuerta and Serrano 2006). Perhaps {and take this cum

gramo salis) agents with a coefficient less than 1 may already be bankrupt and thus not
part of the studies.
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expected-utility decision maker and consider, for example, the following
two gambles: the gamble gin which he gains $105 or loses $100 with
equal probabilities, and the gamble % in which he gains $6.5 million or
loses $10,000 with equal probabilities. Rabin proves that: if (i) g is re-
jected at all wealth levels W< $300,000, then (ii) % must be rejected at
wealth W.= $290,000.

If one were to interpret the wealth W as gambling wealth, then our
result suggests that the premise (i) that one rejects g at all W<
$300,000 is not plausible, since R(g) is only $2,100. If, on the other
hand, wealth were to be interpreted as total wealth, then, as we saw
above, (i) is consistent with wanting to preserve a minimal wealth level
W of at least $297,900 = $300,000 — $2,100. If that is the case, then a
wealth of $290,000 is below the minimal level W, and so it makes sense
to reject k there. '

Thus, if weaith in the Rabin setup is gambling wealth, then the as-
sumption (i) is not reasonable and so it does not matter whether the
conclusion (ii) is reasonable or not.*”? And if it is total wealth, then both
(i) and (ii) are reasonable, because such behavior is consistent with
wanting to keep a certain minimal wealth level W2 $297,000. In either
case, our setup suggests that there is nothing “implausible” here, as
Rabin argues there is (and which leads him to cast doubts on the use-
fulness and appropriateness of expected utility theory*).*

D.  Other Measures of Riskiness

Risk is a central issue, and various measures of riskiness have been
proposed (see the survey of Machina and Rothschild 2008 and Sec. 7
in Aumann and Serrano 2008). We have already discussed in Section
VI.A the recent index of Aumann and Serrano (2008), which is the
closest to ours.

Most of the riskiness measures in the literature (and in practice) turn
out to be nonmonotonic with respect to first-order stochastic domi-
nance, which, as has been repeatedly pointed out by various authors,
is a very reasonable—if not necessary—requirement. Indeed, if gains
increase and losses decrease, how can the riskiness not decrease? Nev-
ertheless, riskiness measures, particularly those based on the variance
or other measures of “dispersion” of the gamble (and also “Value-at-

** Palacios-Huerta and Serrano (2006) argue that (i) is unreasonable from an empirical
point of view (their paper led to the theoretical work of Aumann and Serrano 2008).

% Safra and Segal (2008) show that similar issues arise in many non—-expected utility
models as well. Rubinstein (2001) makes the point that expected utility need not be applied
to final wezlth, and there may be inconsistencies between the preferences at different
wealth levels.

* Of course, this applies provided that there is no “friction,” such as hidden costs {e.g.,
in collecting the prizes} or “cheating” in the realization of the gambles.
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Risk” [VaR];* see Sec. VL.E.1), do not satisfy this monotonicity condi-
tion., : _
Artzner et al. (1999) have proposed the notion of a “coherent measure
of risk,” which is characterized by four axioms: “translation invariance”
(T), “subadditivity” (S), “positive homogeneity” (PH), and “monotonic-
ity” (M). Our measure R satisfies the last three axioms: (PH) and (8)
are the same as (iii) and (iv} in proposition 1, and (M), which is weak
monotonicity with respect to first-order stochastic dominance, follows
from proposition 2. However, R does not satisfy (T), which requires that
R(g+ ¢) = R(g) — cfor every constant ¢ (assuming no discounting; see
Sec. VLLE.7); that is, adding the same number ¢ to all outcomes of a
gamble decreases the riskiness by exactly ¢ To see why this requirement
is not appropriate in our setup, take for example the gamble gof Section
I in which one gains 120 or loses 100 with equal probabilities; its riskiness
is R(g) = 600. Now add ¢ = 100 to ali payoffs; the new gamble g+
100 has no losses, and so its riskiness should be 0, not 500 = 600 —
100.* See also Section VLE.1 below.

E.  General Comments

1. Universal and objective measure. Qur approach looks for a “uni-
versal” and “objective” measure of riskiness. First, it abstracts away from
the goals and the preference order of specific decision makers (and so,
a fortiori, from utility functions, risk aversion, and so on). The only
property that is assumed is that no-bankruptcy is preferred to bank-
rupicy; or, in the shares setup, that infinite growth is preferred to bank-
ruptcy or no-loss to loss.” Second, we make no assumptions on the
sequence of gambles the decision maker will face. And third, our mea-
sure does not depend on any ad hoc parameters that need to be specified
(as is the case, e.g., with the measure Value-at-Risk, which depends on
a “confidence level” @ e (0, 1)).

Of course, if additional specifications are available—such as how the
sequence of gambles is generated—then a different measure may result.
The measure that we propose here may be viewed as an idealized
benchmark.

2. Single gamble. While our model allows arbitrary sequences of gam-
bles, the analysis can be carried out separately for any single gamble g
(together with its multiples); see the example in the shares setup of

% Increasing one of the possible gains leaves VaR unchanged.

* Formally, g+ 100 is not a gamble; so take instead, say, g+ 99.99, where one gains
219.99 or loses 0.01; its riskitiess can hardly be 500.01. The index of Aumann and Serrano
(2008), likewise satisfies (S), (PH), and (M), but not (T).

*” In particular, the fact that gambles with positive expectation are sometimes rejected—
i.e., “risk aversion”™—is a conseguence of our model, not an assumption.
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Section IV and proposition 7 in the Appendix, Section A. The riskiness
R{g) of a gamble gis thus determined by considering g only; no com-
parisons with other gambles are needed.

3. Returns.  One may restate our model in terms of returns: accepting
a gamble g at wealth W yields relative gross returns X = (W+ g)/ W =
1 + g/W. We will say that X has B-returns if E[log X] < 0, and that it has
Greturns if E[log X] > 0 (B stands for “Bad” or “Bankruptcy,” and G for
“Good” or “Growth”):™ a sequence of i.i.d. B-returns leads to bankruptcy,
and of Greturns to infinite wealth (a.s.). Now, accepting g at Wyields
Breturns if and only if W<R(g), and G-returns if and only if W>
R(g) (see lemma 1 in the Appendix, Sec. A), and so R(g) is the cnitical
wealth level below which the returns become Breturns.

4. Acceptance.  As pointed out in Section III, our approach tells us
when we must reject gambles—namely, when their riskiness exceeds the
available wealth—but it does not say when to accept gambles. Any strat-
egy satisfying condition (2) guarantees no-bankruptcy (see proposition
6 in the Appendix, Sec. A). Therefore, additional criteria are needed
to decide when to accept a gamble. For example, use a utility function
and decide according to condition (5) in Section VI.B; or see point 5
below.

. 5. Maximal growth rate. In the shares setup, one may choose that
proportion of the gamble that maximizes the expected growth rate
(rather than just guarantees that it is at least 1, as the riskiness measure
does). This yields a number K = K(g), where Eflog (1 + g/K)) is max-
imal over K> 0; equivalently (taking the derivative), K( g) is the unique
positive solution of the equation E[g/(1 + &/K(g)] = 0; for example,
when g takes the values 105 and —100 with equal probabilities,
K(g) = 4,200 and R(g) = 2,100.* There is an extensive literature on
the maximal growth rate; see, for example, Kelly (1956), Samuelson
(1979), Cover and Thomas (1991, chap. 6), and Algoet (1992). While
the log function appears there too, our approach is different. We do
not ask who will win and get more than everyone else (see, e.g., Blume
and Easley 1992), but rather who will not go bankrupt and will get good
returns. It is like the difference between “optimizing” and “satisficing.”

6. Nonhomogeneous strategies. A simple strategy is based on a riskiness-
like function and is thus homogeneous of degree one. This raises the
question of what happens in the case of general nonhomogeneous strat-
egies, where the critical-wealth function Q: G — [0, =] may be arbitrary.

* The returns in the knife-edge case E{log X] = 0 may be called Creturns ( C for “Critical”
or “Constant”).

™ For 1/2-1/2 gambles g it is easy to prove that K(g) = 2R(g); of course, K(g) > R(g)
holds for every gamble g e & (see lemma 1 and fig. Ald in the Appendix: K(g) is the
point at which ¢ is maximal). It may be checked that K(g) is that wealth level at which a
CRRA utility with v = 2 is indifferent between accepting and rejecting g.

e s e g
PR e U R L
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in the basic no-bankruptcy setup of Section III, for instance, condition
(2) that Q(g) ZR(g) for all gis sufficient to guarantee no-bankruptcy,
whether @ is homogeneous or not (see proposition 6 in the Appendix,
Sec. A). However, this condition is no longer necessary: a nonhomo-
geneous Q allows one to behave differently depending on whether the
wealth is large or small. It turns out that no-bankruptcy is guaranteed
if and only if, roughly speaking, condition (2) holds when the wealth
is small—provided that immediate ruin is always avoided and so the
wealth remains always positive (i.c., Qg > L(g) for all g). See Section
G in the Appendix.

9. Limited liabilit. ~Our approach yields infinite riskiness when the
losses are unbounded (since R(g) > L(g); see also the discussion in Sec.
V.B). This may explain the need to bound the losses, thatis, have limited
liability. It is interesting that, historically, the introduction of limited-
liability contracts did in fact induce many people to invest who would
otherwise have been hesitant to do so.

8. Risk-frec asset and discounting. We have assumed no discounting
over time and a risk-free rate of return 7, = 1. Allowing for discounting
and an qdiﬁerent from 1 can, however, be easily accommodated, either
directly or by interpreting future outcomes as being expressed in pre-
sent-value terms.

9. Axiomaiic approach. 1t would be useful to characterize the riskiness
measure R by a number of reasonable axioms; this may also help clarify
the differences between R and R*S. See Foster and Hart (2008).

10. Riskiness instead of standard deviation and VaR. As pointed outin
Sections V.A and VLD, commonly used measures of risk—such as the
standard deviation ¢ and VaR—may be problematic. We propose the
use of R instead.

Indeed, R shares many good properties with ¢ (see proposition 1);
but it has the added advantage of being monotonic with respect to
stochastic dominance (see proposition 2). For instance, one could use
R to determine “efficient portfolios” (Markowitz 1952, 1959; Sharpe
1964): rather than maximize the expected return for a fixed standard
deviation, maximize the expected return for a fixed riskiness. More-
over, one may try to use E[g]/R(g} in place of the Sharpe (1966) ratio
El(gl/slgl. '

The measures VaR are used for determining bank reserves. Since our
measure R may be viewed as the minimum “reserve” needed to guar-
antee no-bankruptcy, it is 2 natural candidate to apply in this setup.

All this of course requires additional study.

——
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Appendix
Proofs

The proofs are collected in this Appendix, together with a number of additional
results, :

A.  Proof of Theorem L

We prove here the main result, theorem 1, together with a number of auxiliary
results (in particular lemma 1) and extensions (propositions 6 and 7). We start
by showing that R(g) is well defined by equation (1).

Lemma 1. For every g € & there exists a unique number R> 0 such that
Eflog (1 + g/R)] = 0. Moreover: R>L = L(g) (the maximal loss of g);
Eflog (1 + g/M} <0 if and only if L< r< R; and E[log (1 + g/7)] >0 if and only if
>R :

Proof. Let

¢(\) := E[log (1 + Ag)] = 2‘: plog (1 +Ax)

for 0 <A< 1/L. It is straightforward to verify that

¢(0) = 0;
lim ¢(A) =~
A (/L)
‘ _ X
¢'(N) = Z—*"—l o

$'(0) = Zp.«.- = Elg > 0;

" = pxi
¢"(N) Z‘ TES VI

for every A € [0, 1/L). Therefore, the function ¢ is a strictly concave function
that starts at ¢(0) = 0 with a positive slope (¢'(0) >0) and goes to —o as \
increases to 1/L. Hence (see fig. Ala) there exists a unique 0 <X* <1/L such
that ¢(A*) = 0, and moreover ¢(A) >0 for 0 <A< X* and ¢$(\) <0 for <A<
1/L. Now let R = 1/X*. QED

Note that the function ¥{(r) := E[log (1 + g/7)] is net monotonic in rsince £
has negative values (see fig. Al5).

From lemma 1 it follows that R is positively homogeneous of degree one:

Lemma 2. R(Ag) = AR(g) for every ge Gand A>0.

Proof. 0 =E[log (1 + g/R(g)] = E[log (1 + (Ag/AR(], and so AR(g) =
R(Mg) since equation (1) determines R uniquely. QED

We recall a result on martingales:

PROPOSITION 5.  Let (X)),_,,  be amartingale defined ona probability space
(8, 7, P) and adapted to the increasing sequence of ofields (F)),.,, . Assume
that (X,} has bounded increments; that is, there exists a finite X such that
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$(3) = EJlog (1 + Ag)] ¥(r) = Blog (1+ } 9)]

&

— e - e — o ———
b
f=
b-l.
— i — i — — A ——
IZ
~3

=
o]l

a b

Fic. Al—The functions ¢(») and {{r} (sce lemma 1)

|X,.; — X} S K for all ¢ 1. Then for almost every « & 2 either: (i) lim, .. X(w)
exists and is finite; or (i) liminf_. X{w) = — and limsup, . X (o) = +oo. More-
over, define the random variable A, := S E[X,., — X)*F] e [0, =); then (D)
holds for almost every w € @ with A (w) <%, and (ii) holds for almost every
w & 1 with A (@) = .

Proof  Follows from proposition VII-3-9 in Neveu (1975). QED

Thus, almost surely either the sequence of values of the martingale converges
or it oscillates infinitely often between arbitrarily large and arbitrarily small
values. The term A. may be interpreted as the “total onestep conditional var-
iance.”

Theorem 1 will follow from the next two propositions, which provide slightly
stronger results.

PrOPOSITION 6.  If a strategy s satisfies condition (2}, then s guarantees no-
bankruptcy.

We emphasize that this applies to gny strategy, not only to simple strategies;
the function. Q may be nonhomogeneous, or there may not be a critical-wealth
function at all.

Proof of proposition 6.  Consider 2 process G generated by a finite set G, C
G. When g, is accepted at W, we have W= R(g) > L(g), and so W, 2 W,—
L(g) > 0; by induction, it follows that W,> 0 for every & Put

Y,:= log Wi, —log W, (A1)

and let d, be the decision at time #; the history before d, is f_, .= (Wi, g, dis
w3 Weis Gvr doy; W, g). We have E[Y)|f,] 20; indeed, Y, = 0 when g, is
rejected, and ¥, = log (W, +g) —log W, = log (1+ g/W) when it is accepted,
and then E[¥)f_] = Ellog (L + g/W)|£] 20 by (2) and lemma 1.

If g is accepted, then W,>R(g), which implies that 1+g/W<1+
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M(g)/R(g) <® and 1 + g/W,2 1~ L(g)/R(g) > 0. Therefore,

Y, = log(l + %) S,.f:i?;.log (1 +%(f)l)

= mgxlog(l + %f%) <o

and, similarly, ¥,>min,, . log(1 — L(g)/R(g) > — (since G, is finite and the
functions M, Z, and R are homogeneous of degree one); the random variables
Y, are thus uniformly bounded.

Put -

T
Xpi= 2 (¥~ E[¥) f]); (A2)
™
then (Xp);..5 is a martingale with bounded increments. Recalling that
E[Y|f_ 120, we have

T T
X< ¥ = }; (log W,,, ~log W) = log Wy, —log W,
L] =

Now bankruptcy means log W,— ~x, and so Xy~ —~; but the event {X, —
—} has probability zero by proposition 5 (it is disjoint from both (i) and (ii)
there}, and so bankruptcy occurs with probability zero. QED

ProroSITION 7. Let sy be a simple strategy with Q(2) <R(g) for some ge
g. Then there exists a process G = (g,) such that lim,_,, W, = 0 (as.); moreover,
all the g, are multiples of &

Thus there is bankruptcy with probability one, not just with positive probability.

Proof of proposition 7. - Let q:= Q(3); we have ¢>L(g) (otherwise there is
immediate bankruptcy starting with W, = g and accepling g, = g; indeed, once
the wealth becomes zero, it remains so forever by the no-borrowing condition
W2 0, since no gambles may be accepted). Therefore, L(3) < ¢< R(g), and so0
#:= Eflog {1 + z/)] <Obylemma 1. Let (&) =13, be asequence of iid. gambles
with each one having the same distribution as & and take g, = A\ Z with \, =
W/g. Now Qg) = (W/QQ(® = W, and so & is accepted at W, Therefore,
Y=log(l+g/W) =log(1+ &/Q) is an ii.d. sequence, and so, as T— o0,

T

Y,—*E[log(l +$§‘)] =pu<l

(as.), by the Strong Law of Large Numbers. Therefore, log W,.— —w, that is,
Wr— 0 (as.). QED

1 1
}(log Weo —logW) = -

-

B.  Proof of Theorem 2

The result in the shares setup will follow from the following proposition, which
gives a more precise result,

« PROPOSITION 8. Lets, be a simple shares strategy, and let G be a process
generated by a finite §,. Then:

[

e

Sk e e
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>) KQ(@>R(p for every g € G, then lim,_, W, = w a5,
() FQe> R(g for every g € &,, then lim sup,.. W, = o ag,
(=) I Qg =R(g for every ge g, then limsup_ W =w and
liminf, W, =0 as.
(=) If Qg SR(g for every & € Gy, then liminf,__ W=0as,
(<) I Qg <R( g) for every g e &, then litn, . W = 0 as.
Proof  Define ¥,and X, as in the proof of proposition 6 above, by (Al) and
(A2), respectively. Since the gamble tzken at time ¢ ig o.g, where o, =
W,/Q(g), we have

1
Y, =1 (1+51 ,)=1 (1+———-‘).
Og “{g og Q(gx)g

Next,
.1
hm-i,X.,.. =0 (A3)

and
limsupX, =« and lim infX, = —w (Ad)

a.s. as T, Indeed, the random variables Y, are uniformly bounded (since
each g has finitely many values and G, is finite), and so (A3) follows from the
Strong Law of Large Numbers for Dependent Random Variables {see Lotéve
1978, vol. 2, theorem 32.1L.E). As for (A4), it follows from proposition 5 applied
to the martingale X,, since for every history f_,,

El(X,~- X, )02 ﬂnvar[log(l + _Q_(IE)- g)] =:6>0

(we have used the homogeneity of @ and the finiteness of Gy Var denotes
variance), and so A, = o,

We can now complete the Proof in the five cases.

(>} The assumption that Qg >R(g) foreveryge ¢, implies by lemma 1 that

. 1 s
E[Y|f ] ZEI;ISDE[,]Og(I + @g)} =:§">0,

and so, as T oo (as.),
T

1
lim inf%,(log Wiy —log W) = lim inf—i;z Y,

fm]

alim—;;X,.+ =460

(recall (A3)); therefore, lim W, = o,
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{<) Similar to the proof of (>), using

E[Y|f0< ?:XE[log(l + E(gg)] =:3"<0.

(2) Here we have E[Y}£-120, and so
T .
limsup (log Wy, —log W) = limsup 2 Y,z limsup X; = ®
=1 .

by (A%).

(<) Similar to the proof of (2), using now E[Y}f-]=0.

(=) Combine (=) and (). QED

Proof of theorem 2. Follows from proposition 8: (>) and (g) vield (i) (if
Q() <R(P, then take Gto be an ii.d. sequence (g) with all g having the same
distribution as g), and similarly (2) and (<) yield (ii). QED '

C.  Proof of Proposition I
We prove here the basic properties of the riskiness measure, followed by an
additional result on sequences of ii.d. gambles.

Proof of proposition 1. (i), (ii), and (iii) are immediate from (1) and lemmas
1 and 2.

(iv) Let r:=R(g) and ¢ := R(h), and put A:= r/r+ r') e (0, 1). Since
(gt+ B/r+7r) = Mg+ QQ- A)}&/r'), the concavity of the log function gives

E[log(l + %)] 2 AE log(l + f)l + (- )\)E[log(l + %)] =0,

and so r+ ' <R(g+ h) by lemma 1.
(v) follows from (ii) and (iv).
(vi) Put 5:= A% g; then

E{log(l + R—:’g)] = uallog(l + 1_1{%)] +(1-Nlog(+0) =0,

and so R(2) = R(g2).

(vii) The second inequality is (iv) (it is strict since only constant random
variables can be both independent and equal [or proportional], and gambles
in G are never constant). To prove the first inequality, recall the concave function
&(N) := E[log (1 + Ag)] of the proof of lemma 1 (see fig. Ala): it decreases at
its second root A = 1/R{g), and so ¢'(\) = E[g/(1+ Al <0 for X = 1/R(g),
and thus for all A2 1/R{g).

Without loss of generality assume that R{g) £R(h). Put p:= 1/R{g); then
E[log (1 + p2]l =0 > Ellog (1 + ph)) -and, as we have seen above,

E[ﬁ&p_gl{o and E[

1+ph]<0 (AD)

4.

Lt

LR, A

=
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(since p = 1/R{@ and p > 1/R(A)). Now
Eflog (1 + p(g+ k) = Ellog (1 + pg)] + Ellog (1 + oh)]
log(l - _p’gh__)]
(1 +pg)(1 + oh)
The first term vanishes, the second is < 0, and for the third we get

E[lo' (lﬁ_._ﬂ’gﬁ__)]q{_ p'gh |
BT e+ o)) =T U+ 091 + o)

)
T+ a1+ onl <°

+E

= —p!E

{we have used log (1 — x) £ —x, the independence of g and 4, and (A5}). Al-
together Eflog (1 + p(g+ A))] <0, and so 1/p <R{g+ &) (by lemma 1}, proving
our claim (recall that 1/0 = R(g) = min{R(g), R(A)}}. QED
Let g1, &) «.-» g --- be 2 sequence of i.i.d. gambles; then (vii) implies that
R(g)) <R{g, + g, + - + g) <nR(g). In fact, we can get a better estimate.
ProrosiTION 9. Let (g,),.: € & be a sequence of i.i.d. gambles. Then

max {R{g,), nL(g)}<R{g, + g+ + g.) <R{g) + nl(g,) + M(g)).

Moreover, im_.R(g,) = L(g,) = L(g,), where g,:= (g + g, + - + g./n.
FProof  Let h,:= g, + g+ + g, The lefthandside inequality follows

from proposition 1 (vii) and (ii); for the righthand-side inequality, use (4),

R*(h,) = R*(g,) (see Aumann and Serrano 2008, Sec. V.H), and again (4):

Rk} <R¥(h,) + L{k) = R*(g,} + nL(g)) <R{g) + M(g,) + nl(g,).

The “moreover” statement follows from the homogeneity of R. QED

For small =, if R(g,) is large relative to g,, then R(g, + gz + -~ + g,) is close
to R(g,) (compare Sec. VH in Aumann and Serrano 2008). For large n, the
average gamble g, converges to the positive constant Efg,] by the Law of Large
Numbers, and so its riskiness decreases; however, as the maximal loss stays con-
stant (L(g,) = L(g,)), the riskiness of g, converges to it (compare Sec. V.B).

D.  Proof of Proposition 2

We prove here that R is monotonic with respect to stochastic dominance.
Proof of proposition 2. Let r:= R(g) and uy(x) := log (1 + /). If gSD, kor

g SD; A, then Elu,(g)] > E[u,(h)] since u, is strictly monotonic and strictly con-

cave. But E[u,(g)] = 0 by (1), and so E[log (1 + 4/5,)} <0, which implies that

R(g) = n<R(h) by lemma 1. QED

E. Proof of Proposition 3

We will prove a slightly more precise continuity result that implies proposition
3.
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PROPOSITION 10.  Let (gu)am1a.. C & be a sequence of gambles satisfying
sup,, M(g) <. I g, Bge§ and L{g)—L, a8 noo, then R{g,)
max{R{g), L,} as n—>.

Thus R(g,) ~*R(g) except when the limit L, of the maximal losses L(g.)
exceeds R(g), in which case R(g,) = L,.

Proof Denote R,:= max{R(g), L,}. Now g, B¢ implies liminf,L(g,) >
L(g since liminf,P[g, < —L(g) + €] 2P{g< —L(g) + €] >0 for every &> 0 (see
Billingsley 1968, theorem 2.1(iv)), and thus L,z L(g). Let r be a limit point of
the sequence R{g,), possibly *o; without loss of generality, assume that
R{g,) — . Since R(g,) > L{g,) L, it follows that

r2 Lo, (AS)

and so either ris finite or r = ™,

We will now show that r>R(g). Indeed, when r i3 finite (if r = =, there is
nothing to prove here), let0<e<1and ¢:= (1 + g)*r; then for all large enough
n we have .

Rig)<gq (A7)

and

L(g) <1+ Ly S (1 +e)r= (A8)

l1+e 7
(the second inequality by (A6)). Hence E[log (1 + £,./g)] >0 (by lemma 1 and
(A7)), and log{l +g./g) is uniformly bounded: from above by log(l+
sup, M(g,)/p), and from below by log (e/(1 +¢&) since g./q=—-Lig)g>
—1/(1+& by (A8). Therefore, Eflog(l+ g/q)) = lim,E[log (1 + g,/ 20
(since g, Bg), which implies that 4 = (1 + &)*r2R(g) (again by lemma 1). Now
&> 0 was arbitrary, and so we got

r>R(g). (A9)

Now (A6) and (A9) imply that r> R,. If r>R,, then take 0<e<1 small
enough so that ¢:= (1 + €)’R, < r. For all large enough n we then have

q<R{g) (A10)

and

Lig)<(1+eL,s(1+9R, = l‘lTs . (All)

Hence E[log (1 + g./9)] <0 (by lemma 1 and (Al10)), and log (1 + ¢, /q) is again
uniformly bounded (the lower bound by (All)). Therefore, E[log(l +
¢/g)) = lim Ellog (1 + g,/g)) <0 (since g, Bg), contradicting ¢ = (1 +€/’Ro2
(1 + &)’R(g) >R(g) (by lemma 1 and R{g) > L(g) >0).

Therefore, r = R, for every limit point of R(g,}), or R(g,) = R,. QED

Proof of proposition 3. If Ly = L(g), then max{R(g), L,} = R(g); apply prop-
osition 10. QED

To see why the values need to be uniformly bounded from above (ie.,
sup,, M(g,) <), let g, take the values —3/4, 3, and 2! — 1 with probabilities

ey D
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(3/4)(1 — 1/m), (1/4)(1 — 1/n), and 1/n, respectively, and let g ke the values
—3/4 and 3 with probabilities 8/4 and 1/4. Then g, Bgand L(g,) = L(g) =
—8/4, but M(g,) > and R(g,) = 1 # 5.72 = R(p).

F Proof of Proposition 4
We prove the result connecting the measures of riskiness.

Proof of proposition 4. Statement (4) yields the equivalence of (ii) and (iii)
and the “moreover” statement,

(ii) implies (i): Let r,:= R(g,) 2> «. Using log(l + ) = x— x%¥2 + o(x?) as
x> 0 for each value of g, /r, (all these values are uniformly bounded) and then
taking expectation yields

0 = Eflog (1 + g./7)] = Elg. )/ — Elg21A2r2) + o(1/52).

Multiplying by = gives r,E[g,] ~ E[g]/20, and thus E[g,) ~ 0 (since r, e
and the E[g2?] are bounded), that is, (i).

(i) implies (ii): Assume that E[g,] = 0. For every 0<é<]1, let ¢, = (1 —
8)El[gi1/(2E[g.]); then g,— and

log(l +ig,)] =Efg] — %i:il+ a(-i:)

é 1
= '—'i_—sE[g,] + 0(;).

Therefore, for all large enough » we have E{log(l + g,/ <0, and thus
R(g,} > g,~ . QED

REMARE. One may define another measure on gambles: R%(g) =
E[g’]/(?E[g]) for every g € §. It is easy to see that R%(g) — = if and only if (i)~
(iii) hold, and then R°(g) ~R({g,) ~ R*(g,) as n— =, However, R® does not
satisfy monotonicity.®

7,E

G.  Nonhomogeneous Strategies

As discussed in Section VLE.6, we take the basic setup of Section I1I and consider
strategies s, with arbitrary critical-wealth functions Q: G~ [0, %] that are not
necessarily homogeneous of degree one. To avoid inessential technical issues,
we make a mild regularity assumption: a strategy s, is called regular if the limit
Q:(g) := lim,_4+ Q(Ag)/\ exists for every g e & (see remark 2 below for general
strategies).* The result is '

ProposiTioN 11. Let s = 5, be a regular strategy with Q(g) > L(g) for all
g € ¢ Then s guarantees no-bankruptey if Q,(g) >R(g) for every ge &, and

Jonlyif Q,(g) 2R(g) forevery ge .

* Let g take the values 500 and —100 with equal probabilities, and A take the values
800 and —100 with equal probabilities; then g SD, A, but R%(g) = 325 > 250 = R'(k).
*! Note that @, is by definition positively homogeneous of degree one.,
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Thus, for nonhomogeneous strategies, one needs to consider only “smail”
gambles (i.e., Ag with A —0); but, again, R(g) provides the critical threshold,

Proof of proposition 11. We start by showing that Q,(g) >R(g) for every g e
& implies that for every finite set of gambles G, C § there exists £ > 0 such that

Q(g) 2 min (R(g), &} (A12)

for every g € cone G, Indeed, otherwise we have sequences &,—~0* and g, e
cone G, with Q(g,) <min{R(g,), &,} for every n. Since G, is finite, without loss
of generality we can take all g, to be multiples of the same g, € &,, say g, =
A.go- Now A, —0 since &,> Q(g.) > L(g.) = A\, L(g,) >0 (the second inequality
since Q(g) > L(g) for every g); also QA g}/ A, <R g)/h, = R(g,) (since R
is homogeneous of degree one by lemma 2), and so Q,(g,) £R(g,), contra-
dicting our assumption.

Assume Q,(g) >R(g) for all g Given a process G generated by a finite set
Go C G, fix £>0 that satisfies (Al12), Let Z,:= W,,,/W, and define Z!:= 2, if
W< e and 2, := 1 otherwise. Now W,— 0 implies that Wi.:= 11", Z/— 0 (indeed,
let T, be such that Wr<e for all T2 T;; then Wy = [W], /W, IW, for all T> T,
and so Wr— 0 too). We proceed as in the proof of the first part of theorem 1,
but with ¥,:= log Z,, to obtain P[W;— 0] = 0, and thus P[W,.— 0] = 0.

Conversely, assume that there is g € ¢ with Q,( <R(g). Let ¢ be such that
Q.(2) < g<R(g); then there exists >0 such that for all A< we have Q(\3) <
Ag, and thus Mg is accepted at Ag. Equivalently, (W/g) 7 is accepted at W for all
W< &¢q. We now proceed as in the proof of proposition 7. Let g be an iid.
sequence with g having the same distribution as Z for every £ let G = (g,) be
the process with g, = (W/g)g for every t; put Up:=37 ¥, = T log(l+ &/9)-
Then U/T— u:= E[log (1 + g/g)] <0, and so

U, — (A18)

as. as T—om,

This does not yield bankruptcy, however, since the wealth W, may go above
b4, where we have no control over the decisions, and then log (Wy.,,/W;) need
no longer equal Y. What we will thus show is that the probability of that hap-
pening is strictly less than one, and so bankruptcy indeed occurs with positive
probability.

First, we claim that there exists K> 0 large enough such that

PlU <K for all T]>0. (Ald)
Indeed, the Y, are ii.d., with E[Y] = y<0 and a<Y,<b for a = log (1 —
L(g)/g) and b = log (1 + M(g)/g); applying the “large deviations” inequality of
Hoeffding (1963, theorem 2) yields
PlU> K] = P(U;— pT> K+ |u|T]

- 2K + ? :
=< cxp(——%) < exp (~cT— dK)

for appropriate constants ¢ d>0 (specifically, ¢= 2u¥(b—a)® and d=

%
I
¥
¥
1'
E
2
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4|u|/(5 — a)®). Therefore,

P[U,> K for some T]< 2, exp(—cT— dK) = exp (e dK)
=1 1 —exp(—¢)

which can be made < 1 for an appropriately large K; this proves (Al4).

Start with W, < 8¢ exp (—K). We claim that if U, £ Kfor all 7, then gyis accepted
for all T, Indeed, assume by induction that g, gy, ..., gr have been accepted,;
then Wy = W, exp (Ur,) < W exp (K) <8¢, and so g, = (W,/g) gris also accepted
(at Wy). But if g is accepted for all 7, then Wy = W exp (Uy.,) for all 7; since
U~ —» as. (see (Al3)), it follows that W, =0 as. on the event {U < K for
all T}. Therefore, P{W,—0) 2 P[U;< K for all T] >0 (see (Al4)), and so the
process G leads to bankruptcy with positive probability. QED

REMARK 1. In the proof we have shown that Q,(g) >R(g) for all gimplies
that for every finite set of gambles G, C G there exists >0 such that {(g) 2
min {R(g), &} for every g & cone G, or**

s rejects g at all W<R(g) with W<e. {Al5)

Compare (2): the addition here is “W<e.” Condition (Al5) means that the
policy of rejecting gambles whose riskiness exceeds the wealth (ie., W<R(g))
applies. only at small wealths (i.e., W< g); see Section VLE.6.

ReMARK 2. Slight modifications of the above proof show that for a general
strategy s that need not be regular or have a critical-wealth function (but does
reject g when W< L(g)), a sufficient condition for guaranteeing no-bankruptcy
is that for every g e G, if W<R(g) then s rejects Agat AW for all small enough
A (i.c., there is >0 such that this holds for all A < 8); a necessary condition is
that for every g € &, if W<R({g) then s rejects Ag at AW for arbitrarily small A
(i.e., for every 8 >0 there is X < where this holds). If we let Q,(g) := inf{W>
0:s accepts g at W}, then liminf, ;. Q {Ag)/A>R(g) for all g is a sufficient
condition; and when s is a threshold strategy (i.e., s accepts gat all W> Q (g}),
then limsup,,+ @, (Ag)/A 2 R(g) for all gis a necessary condition.
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