
Deterministic Calibration with Simpler Checking

Rules

Dean Foster

University of Pennsylvania

and

Sham Kakade

University of Pennsylvania

April 12, 2005



The problem: Learning Nash equilibria

Current methods are slow and involve exhaustive search.

Can a fast method be found?

How about for special form games?



Measuring complexity

Two definitions of speed of convergence:

• total CPU used

• number of rounds of play



History

Forecast probability Forecast utility

Blackwell CE CE

Calibration No regret
(F. and Vohra, ’97) (F. and Vohra ’97)

(Hart and Mas-Colell ’00)

Exhaustive NE NE

search Hypothesis testing Regret testing
(F. and Young ’03) (F. and Young ’05)

(Germano & Lugosi ’05)

Public NE NE

methods Weak calibration Weak utility estimation
yesterday’s talk today’s talk

(Kakade and F. ’04) (Kakade and F. ’05)



Speed (rounds of play)

Forecast probability Forecast utility

Blackwell (1/ε)an
(a/ε)2

(→ CE)
Exhaustive

search � (1/ε)an � (1/ε)an

(→ Nash)
Public

methods (1/ε)an
(1/ε)an

(→ Nash)
2|I| |I|log log |I| (with constant a)

n = number of players

a = number of actions per player

ε = desired accuracy

|I| = an = input size (a is fixed)

(CE: Blackwell gives fast approx algo. NE: slow, few computational
results known.)



Background: Testing functions in calibration

• Xt sequence to be forecast by pt

• Weak calibration, means

1

T

T∑
t=1

(Xt − pt) w(pt) → 0

– w() is any smooth function.

– What Sham talked about yesterday.

• Today’s twist: Use other testing functions. Eg

1

T

T∑
t=1

(Xt − pt) w(pt, Xt−1) → 0

Would test for Markov patterns.



Relationship between testing functions and conditional expectation

• “Advanced” version of conditional expectation

E [(X − E(X|Y )) w(Y )] = 0.

– X, and Y are random variables

– w() is measurable. (Can restrict w() to be smooth.)

– We should assume E(X|Y ) = h(Y ) for some measureable
function h()

• Contrast with our definition:

1

T

T∑
t=1

(Xt − pt) w(pt, Xt−1) → 0

– can think of pt = Ê(Xt|Xt−1, pt)

– If we could enforce measurability we might get uniqueness and
then this notation would be useful.



Individual vs Public calibration

• Game setting for calibration

– Xi,t is the observable that player i cares about at time t

– pi,t is a forecast of Xi,t

• Individual calibration:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(pi,t) → 0

• Public calibration:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(~pt) → 0



The game model

• Player i uses pi,t to predict the round t

• Player i then use smooth decision rule si(pi,t) to pick the

probability of their play in round t.

• Player i then randomly action Si from this distribution



Observables

• Game setup:

– Take Xi = S−i (i.e. all actions but player i)

– pi,t is forecast of Xi,t

• Individual calibration:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(pi,t) → 0

• Public calibration:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(~pt) → 0



Convergence

• Suppose players play a smooth best reply to forecast pi,t.

– Traditional calibration → correlated equilibria

– Public calibration → Nash equilibria

• Speed of convergence is related to dimension of the “Hilbert

space” of the testing functions

– For individual: dimension (1/ε)an

– For public: dimension is (1/ε)nan

– Hence convergence is slow in both cases.

• Need lower dimensional space, but what can be changed?



Proof: Public calibration converges to NE

• Truth ≈ prediction

– via calibration

• Truth is independent

– Given ~p each player is in fact playing independently

• ε-rationality

– ε-BR to prediction

– pi includes information about what all other players will do

• Independence + ε-rationality = ε-NE.



What can be changed?



Utility estimation

• Take Xi,t to be the vector of potential payoffs

– ~S−i is the vector of everyone else’s play

– ui,t(k) = ui(k, ~S−i,t)

– Xi,t = (ui,t(1), . . . , ui,t(a))

• Utility model

– pi,t is an estimate of Xi,t made at time t− 1

– For CE we need

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(pi,t) → 0

– For NE we need

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(~pt) → 0



Speed of convergence of utility estimation

• For CE: number of rounds is O((n/ε)a)

• For NE: number of rounds is O((n/ε)an)

• Looks almost polynomial in length of input

– |I| = an = input size (a is fixed)

– number of rounds is O(|I|log log |I|)

– “pseudo Poly”.

• Although exp in a, little known computationally.



Graphical Models for Game Theory

• Undirected graph capturing local (strategic) interactions

(Kearns, Littman, & Singh)

– Each “player” represented by a vertex

– Payoff to i, is only a function of neighbors actions

– Compact (yet general) representation of game

– Assume max degree is d, then representation is O(nad) instead

of O(an).

• Can graphical games be learned faster than general games?



Need smaller observable set

• Xi,t need only capture plays of neighbors

– N(i) is the set of neighbors of i (assume |N(i)| ≤ d)

– SN(i)−i is actions of all neighbors excluding self

– ui,t = ui(Si,t, SN(i)−i)

– pi,t is forecast of Xi,t

• Same proof as before shows that for a NE we need

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(~pt) → 0

• But we desire to to better for structured games.

(This is (1/ε)nad
, while the representation of a graphical game is

nad.)



Don’t need to check as much

• We don’t need to check w(~pt)

• Instead we can check only

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(~pN(i),t) → 0

where ~pN(i),t is a vector of all the p’s of all the neighbors of i.

• Since this is all that matters in ui(), rationality against this set is
rationality against the entire ~p.

• Complexity: n(1/ε)a2d

• The complexity is |I|.

• NOTE TO SELF: No matter how excited you are about a
complexity, never, write it as |I|!



A even smaller observable set

• Xi = personal utility

• pi = forecast of personal utility

• w() is local:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(~pN(i),t) → 0

• Converges to NE.

• Complexity: n(1/ε)ad



A system based on trust

• Xi = action taken

• pi = forecast of own action

• decisions are made based on other peoples forecast of themselves

• w() is local:

(∀i)
1

T

T∑
t=1

(Xi,t − pi,t) w(~pN(i),t) → 0

• Converges to NE.

• Complexity: n(1/ε)ad

• Violations can cause the system to crumble



Summary: Complexity of Learning in Graphical Games

Speed of convergence:

• Complexity: n(1/ε)dad

• Recall, game representation is nad

• Hence, the max degree is the bottleneck!

• Can get better results with utility forecasts: n(1/ε)da

CPU time:

• For tree games, fast per round computation

• Total CPU time comparable to NashProp

• For general graphs, could be hard to make forecast each round



See reverse side of handout for related readings


