Deterministic Calibration with Simpler Checking

Rules

Dean Foster
University of Pennsylvania

and

Sham Kakade
University of Pennsylvania

April 12, 2005

Current methods are slow and involve exhaustive search.

Can a fast method be found?

How about for special form games?

Two definitions of speed of convergence:

e total CPU used

e number of rounds of play

Forecast probability

Forecast utility

Blackwell CE CE
Calibration No regret
(F. and Vohra, '97) (F. and Vohra '97)
(Hart and Mas-Colell '00)
Exhaustive NE NE
search Hypothesis testing Regret testing
(F. and Young '03) (F. and Young '05)
(Germano & Lugosi '05)
Public NE NE
methods Weak calibration Weak utility estimation
yesterday’s talk today’s talk

(Kakade and F. '04)

(Kakade and F. '05)

Forecast probability Forecast utility

Blackwell (1/€)%" (a/€)?
(— CE)
Exhaustive

search > (1/a" > (1/€)n

(—> Nash)
Public

methods (1/€)%" (1/¢)am
(—> Nash)

el [Z|'°9109|Z] (with constant a)

S

S mn

1| =a

number of players

number of actions per player
desired accuracy

input size (a is fixed)

(CE: Blackwell gives fast approx algo. NE: slow, few computational

results known.)

e X; sequence to be forecast by p¢

e \Weak calibration, means
1 T
— > (Xy—p) wlp) — 0
thl

— w() is any smooth function.

— What Sham talked about yesterday.

e Today’'s twist: Use other testing functions. Eg

1 T
T > (Xt —pt) wlpt, Xp—1) — O
=1

Would test for Markov patterns.

e "Advanced’ version of conditional expectation

E[(X - BE(X]Y)) w(¥)] = 0.
— X, and Y are random variables
— w() is measurable. (Can restrict w() to be smooth.)

— We should assume E(X|Y) = h(Y) for some measureable
function h()

e Contrast with our definition:

1 T
- > (Xt —pr) wpt, Xp—1) — O
=1

— can think of p; = E(X:|X:_1, pt)

— If we could enforce measurability we might get uniqueness and
then this notation would be useful.

e Game setting for calibration
— X, Is the observable that player ¢« cares about at time ¢

— p;t IS a forecast of X,

e Individual calibration:

1 T
(Vi) ? Z —pit) w(pig) — 0

e Public calibration:

1 T
(%) X (i = pia) w) = O

e Player i uses p;; to predict the round ¢

e Player i then use smooth decision rule s;(p; ;) to pick the
probability of their play in round ¢t.

e Player ¢+ then randomly action §; from this distribution

e Game setup:
— Take X; = S_; (i.e. all actions but player %)

— p; ¢ IS forecast of X ;

e Individual calibration:

1 T
(Vi) ? Z —pit) w(pig) — 0

e Public calibration:

1 T
(%) X (i = pia) w) = O

e Suppose players play a smooth best reply to forecast Dit-
— ‘Traditional calibration — correlated equilibria
— Public calibration — Nash equilibria
e Speed of convergence is related to dimension of the “Hilbert
space’ of the testing functions
— For individual: dimension (1/¢)%"
— For public: dimension is (1/¢)™"

— Hence convergence is slow in both cases.

e Need lower dimensional space, but what can be changed?

Truth ~ prediction

— via calibration

Truth is independent

— Given p each player is in fact playing independently

e-rationality
— ¢-BR to prediction

— p; includes information about what all other players will do

Independence + e-rationality = e-NE.

What can be changed?

e Take X;; to be the vector of potential payoffs
— §_Z- IS the vector of everyone else’s play
— u; (k) = u;(k, g—z’,t)
o Xi,t — (ui,t(1)7 JEI 7u’i,t(a’))

e Utility model

— p;t 1S an estimate of X;; made at time ¢ —1

— For CE we need
1 T
(Vi) f Z —pit) w(pit) — 0
— For NE we need

1 T
(%) 3 (Kot = pia) w(ii) — ©

e For CE: number of rounds is O((n/e)%)
e For NE: number of rounds is O((n/e)®")

e Looks almost polynomial in length of input
— |I| = a™ = input size (a is fixed)
— number of rounds is O(|Z|'°9'°91Z])

— “pseudo Poly".

e Although exp in a, little known computationally.

e Undirected graph capturing local (strategic) interactions
(Kearns, Littman, & Singh)

— Each “player’” represented by a vertex

— Payoff to 1, is only a function of neighbors actions

— Compact (yet general) representation of game

— Assume max degree is d, then representation is O(na?) instead

of O(a™).

e Can graphical games be learned faster than general games?

o X,y need only capture plays of neighbors
— N(i) is the set of neighbors of i (assume |[N(i)| < d)
— SN(Z-)_i is actions of all neighbors excluding self
— uit = wi(Sit, SN(i)—i)

— p; ¢t IS forecast of X ;

e Same proof as before shows that for a NE we need

| 1 & B}
(Vi) = (Xijt—pig) w@s) — 0
1=

e But we desire to to better for structured games.

(This is (1/e)md, while the representation of a graphical game is
d
na®.)

We don't need to check w(py)

Instead we can check only

1 T
(Vi) — > (Xiy—pip) wByys) — O
' =

where py ;) 4 is @ vector of all the p's of all the neighbors of i.

Since this is all that matters in u;(), rationality against this set is
rationality against the entire p.

Complexity: n(l/e)“zd
The complexity is |Z|.

NOTE TO SELF: No matter how excited you are about a
complexity, never, write it as |Z|!

X; = personal utility
p; = forecast of personal utility
w() is local:
1 T
(Vi) T, Z it — Pit) W(PN)+) — O
Converges to NE.

Complexity: n(l/e)“d

X; = action taken
p; = forecast of own action
decisions are made based on other peoples forecast of themselves
w() is local:
1 T

(Vi) T, Z it —Pit) WBNG)) — O
Converges to NE.
Complexity: n(l/e)ad

Violations can cause the system to crumble

Speed of convergence:

e Complexity: n(1/¢)da

e Recall, game representation is na®

e Hence, the max degree is the bottleneck!

e Can get better results with utility forecasts: n(1/e)d
CPU time:

e For tree games, fast per round computation

e [otal CPU time comparable to NashProp

e For general graphs, could be hard to make forecast each round

See reverse side of handout for related readings

