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Abstract

Consider a finite stage game G that is repeated infinitely often. At
each time, the players have hypotheses about their opponents’ repeat-
ed game strategies. They frequently test their hypotheses against the
opponents’ recent actions. When a hypothesis fails a test, a new one
is adopted. Play is almost rational in the sense that, at each point
in time, the players’ strategies are e-best replies to their beliefs. We
show that, at least 1—e of the time ¢ these hypothesis testing strategies
constitute an e-equilibrium of the repeated game from ¢ on; in fact the
strategies are close to being subgame perfect for long stretches of time.
This approach solves the problem of learning to play equilibrium with
no prior knowledge (even probabilistic knowledge) of the opponents
strategies or their payoffs.

JEL: C72, C12.

Keywords: repeated game, Nash equilibrium, subgame perfect equilibri-

um, hypothesis test.
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1 Statement of the problem

Consider a group of players who are engaged in a repeated game and are
trying to learn the behavior of their opponents. At every time they play op-
timally, or almost optimally, given their beliefs. Their beliefs are generated
by a learning process, that is, a procedure that maps past play to predictions
about future play. Are there learning strategies that come close to equilibri-
um play of the repeated game without assuming any prior knowledge of the
opponents’ strategies or payoffs?

There have been several lines of attack on this learning problem, but
none of them is robust in the above sense. The oldest branch of the liter-
ature is built on fictitious play (Brown 1951). This simple learning process
converges to Nash equilibrium for special classes of games, such as zero-sum
games, dominance solvable games, games with strategic complementarities
and diminishing returns, and potential games (Robinson, 1951; Milgrom and
Roberts, 1991; Krishna, 1992; Monderer and Shapley, 1996). However, there
are many examples in which it does not converge to Nash equilibrium (Shap-
ley 1964; Jordan 1993; Foster and Young 1998a). Further, even in some
situations where it does converge, such as zero-sum games with only mixed
equilibria, the convergence is not of the type we desire: namely, the players’
forecasts are not close to the actual next round probabilities of play, nor are
their strategies close to being in equilibrium.

A second branch of the literature explores conditions under which
Bayesian rational players can learn to play Nash when the distribution of
payoff-types is common knowledge. One answer is provided by Jordan (1991),
who shows that if the players’ prior beliefs about the others’ strategies con-
stitutes a sophisticated Bayesian equilibrium, then every accumulation point
of the posterior beliefs is, with probability one, a Nash equilibrium in beliefs

(see also Jordan, 1992, 1995). In our view this merely pushes the problem
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of learning an equilibrium onto another level. Moreover these results do not
solve our version of the problem because the learning process does not nec-
essarily result in equilibrium or good prediction for the realized payoff-types.

A third approach to the learning problem was pioneered by Kalai and
Lehrer (1993). They show that if the players’ prior beliefs attach positive
probability to all events that have positive probability under the players’
actual strategies, then with probability one, play will eventually come e-
close to an e-equilibrium of the repeated game. Their result would solve
our problem if one could identify a robust procedure for constructing priors
on the opponents’ strategies such that the players’ best-response strategies
are absolutely continuous with respect to their beliefs. They do not give
an example of such a rule; moreover the subsequent literature suggests that
it may be very difficult to do so (Nachbar, 1997, 1999, 2001; Miller and
Sanchirico, 1997, 1999; Foster and Young, 2001).

A fourth branch of the literature focuses on learning procedures that are
based on backward rather than forward-looking criteria of performance. For
example, given a complete history of play, one might ask whether it would
have been better on average, to play x instead of y in all of those situations
where one actually did play y. If no such substitution would have resulted in
a higher average payoff, the history minimizes conditional regret. There exist
a variety of quite simple learning rules that have this property. Moreover,
when every player minimizes conditional regret, the empirical distribution
of play converges with probability one to the set of correlated equilibria of
the game (Foster and Vohra, 1997, 1998, 1999; Foster 1999; Fudenberg and
Levine, 1995, 1999a, 1999b; Hart and Mas-Colell, 2000, 2001).

Like fictitious play, these learning rules are quite simple computationally,
and presume nothing about the players’ prior information about the oppo-
nents’ payoffs. Indeed, they are more satisfactory than fictitious play in the

sense that they work for all finite games. But they are less satisfactory in the
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sense that they rely on backward-looking criteria of performance, rather than
forward-looking ones. Furthermore, convergence is to the set of correlated
equilibria, which is much larger than the set of Nash equilibria.

Before proceeding, let us remark that there is no difficulty in constructing
dynamic algorithms that converge to Nash equilibrium of the stage game.
Indeed, given a small € > 0, simply search the space of mixed strategies until
one finds an e-equilibrium of the stage game, then search the space until one
finds an €/2-equilibrium, and so forth ad infinitum.

There are several reasons why this is not a satisfactory solution to the
learning problem. First, it is not a decentralized learning process; it requires
coordinated search. Second, it requires that the payoffs be common knowl-
edge to all players, hence it is not robust. Third, it ignores the desire of the
players to maximize their payoffs as the learning proceeds.

In this paper we exhibit a natural class of learning procedures, based
on the classical notion of hypothesis testing, that avoids these difficulties.
There is no coordination, no common knowledge, and no special assumption
about the players’ priors. In fact, not only is there no common knowledge,
there is no knowledge of either the opponents’ payoffs or their distribution.
Nevertheless, these hypothesis testing strategies come close to equilibrium in
the following sense: at least 1 — € of the time ¢ they are e-equilibria of the
repeated game from ¢ onward, and in fact they are e-close to being subgame

perfect for a long stretch of time.

2 Statement of the main result

We begin by recalling the elements of hypothesis testing. A hypothesis test

has four basic ingredients: i) first one observes sample outcomes of a process;

!Forward looking learning processes that lead to correlated equilibria are discussed by
Nyarko (1994, 1997).
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ii) one then compares the observations to predictions under a null hypothesis;
iii) one rejects the null hypothesis if it is improbable that the observations
could have occurred given that the null hypothesis is true; iv) one then selects
a new hypothesis, and the process is repeated.

In the context of a repeated game, the data consist of the actions taken
in previous periods, which we assume are publicly observed. A “hypothesis”
is a model or forecast of how one’s opponents are going to act in the future
(conditional on play so far) together with one’s own behavioral response. In
other words, it is a hypothetical probability distribution over future actions,
conditioned on each and every history that could unfold.

There is, however, a complication in testing hypotheses about people
that does not crop up when testing hypotheses about nature. While holding
a hypothesis, the hypothesis tester is forced to take actions that his opponent
can observe. If the hypothesis tester is rational, these actions must bear a
particular relationship to the hypothesis. This means that the opponents
can make inferences about the tester’s current hypothesis, and hence his
future actions, which may cause them to alter their future actions, thus
perhaps invalidating the tester’s hypothesis. In short, there is a feedback
loop from the model to the object being modeled. The challenge is to design
a hypothesis testing rule that solves the associated fixed-point problem, yet
is simple to implement and requires no coordination among the players.

We begin by considering the hypotheses that agents entertain about the
strategies of their opponents, and the hypothesis tests they employ. Say that
a repeated game strategy has memory m if it conditions only on the previous
m periods of history. A player’s hypothesis has memory m if it attributes
memory m strategies to each of the opponents, and the player’s response

also has memory m.2 Notice that this definition is consistent with rationality,

2This approach contrasts with Jehiel (1995, 1998) who examines learning processes in

which the players look forward only a finite number of periods.
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because if an agent’s model of the opponents’ behavior has memory m, then
there exists at least one best-response behavioral strategy that has memory
m.

Any strategy of memory m for player ¢ can be represented by a point in a
finite dimensional Euclidean space. Specifically, let X; denote 4’s finite action
space, and let A; be the set of probability distributions on X;. A strategy of
memory m consists of a choice in A; for each length-m history of play. Thus
the set A; of i’s memory-m strategies is a product of simplexes, one for each
length-m history on which the strategy next period can be conditioned. A
hypothesis of memory m for player 7 can therefore be represented by a point
in A = [[; A;. Note that player i is “hypothesizing” about the stochastic
process generating the sequence of actions taken, including i’s own actions.
This simplifies notation since everyone’s hypotheses lie in the same space.

We hasten to point out that while the players’ hypotheses have bounded
memory, typically their repeated game strategies do not. The reason is that
hypotheses change from time to time due to the failure of hypothesis tests.
Hence the players’ repeated game strategies are much more complex than
their models, and typically have unbounded memory. The same holds for
the process generating the players’ updated beliefs. Thus the assumption
of bounded memory for the hypotheses should be interpreted as a form of
bounded rationality in which players construct simplified models of the world
around them. As Theorem 1 will show, this simplification “works” in the
sense that actual behavior over long periods of time will in fact be very
close to the simplified model. (To avoid misunderstandings in what follows,
we shall reserve the term “strategy” to mean repeated-game strategy, and
“belief” to mean a probability distribution over the opponents’ strategies.
The adoption and rejection of hypotheses defines the players beliefs, and the
sequence of behavioral responses to the changing hypotheses defines their

repeated-game strategies.)
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Next let us consider what kinds of hypothesis tests the agent should
employ. The objective is to identify the strategies that one’s opponents are
currently using, not what they did in the distant past. It therefore makes
sense to conduct a test only on recent data, say plays in the last s; periods,
where s; is agent i’s sample size. In addition, one needs to use a test with
sufficient power. If the hypothesis is sufficiently far from the truth, the test
should reject it with probability close to one: the probability of a type-II
error should be small. Similarly, if the hypothesis is sufficiently close to the
truth, the probability of rejecting it should be close to zero: the probability
of a type-I error should be small. As we shall see later, it is easy to design
tests such that type-I and type-II errors go to zero exponentially fast as s;
increases. Such a family of tests is said to be powerful.

Next we turn to the question of how a tester chooses a new hypothesis
after he rejects an old one. Classical hypothesis testing is silent on the
question of how alternative hypotheses are chosen. One could, for example,
use a maximum likelihood approach, but this is only one of many possibilities.
We shall therefore remain agnostic about the exact mechanism that leads to
the choice of new hypotheses. The remarkable fact is that virtually any
mechanism works as long as no hypothesis is “excluded” in a sense made
precise below.

Specifically, let us suppose that when agent i’s test fails in period ¢ he
chooses a new hypothesis according to some density f;(-|@) on the space A.
(Note that the choice of new hypothesis may depend on the entire history of
play, not just the most recent test data.) If we wish, we can view i’s choice
of new hypothesis at time ¢ as being determined by the outcome of a random
variable éf that conveys private information to 7. With this interpretation,
7’s new hypothesis can simply be viewed as the updating of i’s belief given
the new information. Since the realized values (éf) play no role in the proof,

however, we shall suppress them in what follows. All that matters are the
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conditional distributions f; that govern the choice of new hypotheses when
a hypothesis test fails.

We make two assumptions about the f;. First, each f;(-|') is uniformly
bounded away from zero for all @*.2 Second, the new hypothesis lies within ),
of the old hypothesis with probability at least 1 — A;, where ); is positive and
close to zero. These assumptions amount to saying that the tester adopts
“radical” hypotheses with non-negligible probability no matter what the his-
tory tells him, but that for the most part he chooses new hypotheses that are
close to the old ones. Such a hypothesis tester is said to be flexible and con-
servative. (Actually, conservatism is not needed to prove convergence, but
it is needed to show that hypothesis testing is almost rational as a repeated
game strategy.)

Lastly, we need to specify how a tester chooses his own response given
his model of the others’ behavioral responses. Assume that for each player 7
there is a family { A7?} of response functions, indexed by a response parameter
o; > 0, such that the following conditions hold. First, each A" is a continuous
mapping from 7’s model space B; to i’s response space A;. Second, if o; is
small, the response is almost rational, in the sense that its expected payoff is
within o; of the payoff from an optimal strategy for some small g; > 0. Third,
the response is diffuse in the sense that ¢ plays every action in every period
with positive probability. We shall say that {A7*} is a family of smoothed best
response functions if it satisfies these three conditions. This type of response
behavior can be viewed as a form of bounded rationality or, if we wish, as
strictly optimizing behavior under small, unobserved utility shocks.

A player who never changes response-no matter what model he holds—has

3In the proof we will actually use a weaker condition, namely, we shall assume that f;
is diffuse in the sense that, for each 79 > 0, the f;-measure of any 7p-ball of hypotheses
is bounded below by a strictly positive number fi(79) > 0. This allows us to consider

discrete distributions as well as continuous ones.
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no motivation to predict accurately, because accuracy in prediction does not
affect his payoff. (An example is a player who only considers memory zero
models and has a strictly dominant strategy.) We say that prediction does
not matter for such a player. More generally, say that prediction matters
by at most € if a player has a strategy that is an e-best response to every
memory-m model of the opponents; otherwise prediction matters by more
than e.

Player 7 is an e-good predictor if i’s prediction of the opponents’ behavior
differs from their planned next period behavior by at most € at least 1 — € of
the time. Equivalently, the average of i’s absolute errors in prediction up to
time ¢ is bounded above by a small number for all sufficiently large .

In general let G*° be an infinitely repeated n-person game, where the stage
game G is finite. An n-tuple of repeated game strategies is an e-equilibrium
at time t if, given any realization to time ¢, the continuation strategy for each
player ¢ has an expected discounted payoff that is within € of the maximum
expected discounted payoff among all continuation strategies.

Let a; € A; be a memory-m strategy for each player 7. Suppose that
player 7 plans to play a; in each period ¢ > m + 1. Then we obtain a
repeated game strategy, which we also denote by a;, that has memory m and
is time homogeneous. The n-tuple of strategies @ € A is a subgame perfect
equilibrium if, for each @, playing a; in each period from ¢+1 on is an optimal
response given that every player j # ¢ plays a; from ¢ + 1 on.

Given € > 0, we say that a repeated game strategy-tuple (Si,...,S,) is e-
close to being a subgame perfect equilibrium at time t if there exists a subgame
perfect equilibrium @ € A such that for at least 1/¢ periods beginning at ¢
the conditional distribution on X; induced by S; is e-close to the conditional
distribution induced by a;, where closeness is measured by Euclidean distance
in A;. Notice that being e-close to subgame perfect equilibrium requires not

only that behavior is close in a given period, but that it stays close for a long
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period of time.

We can now state our principal result (Theorem 2 below). Let G be a
finite, normal-form, n-person game and let € > 0. If the players are almost
rational, use sufficiently powerful hypothesis tests with comparable amounts
of data, and are flexible in their adoption of new hypotheses, then at least 1 —e
of the time: i) their repeated-game strategies are e-close to subgame perfect

equilibrium, i) all players for whom prediction matters are e-good predictors.

3 A simple example

A particularly simple example of this set-up is the following. At each time
t, agent i’s model b} is that the opponents are using a memory-zero strategy,
that is, b} generates the same distribution of actions z_; in every period t' > ¢
irrespective of the history. Let U;(z;,b!) be i’s expected utility, discounted to
time ¢, from playing z; in each period from ¢ on, given the model bt. Without
loss of generality we may choose U;(-) so that the maximum expected payoff
is one and the minimum is zero. Let

eUi(zib}) /o

(st =
pi(zi]b;) ZyiEXi eUiyisbl)/oi

(1)

This is the logit response function introduced by McKelvey and Palfrey
(1995). The smaller o; is, the closer the response is to being a best re-
ply. Specifically, given any ¢ > 0, if o; is sufficiently small, the utility from
this rule is within € of the maximum utility over all rules, given the prediction
bt about the behavior of the opponents in all future periods.

At the end of each period ¢ in which agent ¢ is not presently conducting
a hypothesis test, he initiates a test with probability 1/s;. After s; periods
have elapsed, he applies the “distance test” with tolerance 7;, that is, he
rejects his current hypothesis if and only if the observed empirical frequency

distribution of plays in periods t + 1,...,t + s; is more than 7; away from



September 23, 2002 12

his hypothesis as measured by the Euclidean norm. Assume that, if the
hypothesis is rejected, then with probability 1 — A; he retains it, and with
probability A; > 0 he draws a new hypothesis at random via the uniform
distribution. We call this the logit response and distance test.

It is governed by four parameters: the degree of smoothing o;, the tol-
erance 7; between the model and empirical distribution, the amount of data
collected, s;, and the degree of conservatism JA;. Our result implies that,
given any small € > 0, if all o; are sufficiently small, all 7; are sufficiently
small (given the o;), and all s; are sufficiently large (given the o; and 7;),
then all players for whom prediction matters are e-good predictors. Further,
at least 1 — € of the time the strategies constitute an e-equilibrium of the
repeated game and in fact are e-close to being subgame perfect. (Note that
these two statements do not depend on the size of the );.) Finally, if the \;’s
are sufficiently small, then at all times the repeated game strategies generat-
ed by this hypothesis testing procedure are e-optimal relative to the players’
beliefs, that is, to the conditional probabilities they assign to future play

paths taking into account their own future changes of hypothesis.

4 Models and hypotheses

Let GG be a finite, n-person game with playersi = 1,2, ..., n. The action space
of player ¢ is denoted by X;, and the utility function by u; : X — R, where
X =T1IX;. The game G is played infinitely often, and the actions in each
period are publicly observed. A history of play is denoted by w, and the set of
all possible histories by Q. Given a history w, w' = (w!,...,w!) € X denotes
the actions taken in period t. Let @' = (w',w?,...,w") denote the sequence
of actions taken in periods 1 through t inclusive. Finally, the set of all
continuations of the initial history @’ is denoted by Q(@') = {a € Qla* = w'}.

The basic building block of our analysis is the concept of a model. A model
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for a given player is a forecast of the player’s opponents’ one-step-ahead be-
haviors, conditional on every possible initial history. In other words, a model
b; for player 7 specifies a conditional probability distribution p!(z_;[w'™!, b;)

for every initial history @w’~!

. (Note that a model might attribute correlated
strategies to the opponents. These incorrect models eventually get weeded
out by the learning process.)

A model b; has memory at most m if the conditional distributions satisfy
i@ b)) = plz_ijw™™, ..., w'tb;)  for all t > m.

If a model b; has memory at most m, there are M = |X|™ distinct objects
on which the conditional probabilities p! € A_; depend. (The distributions
pl(z_;|w'1,b;) for 1 < ¢ < m can be chosen arbitrarily and will be ignored
in what follows.) A list of these conditional probabilities determines the
model, that is, we can identify the model with a point in the Euclidean space
B; = 11,4 A;-V" . Thus B; is the space of all models having memory at most

m. Let |B;| denote the dimension of this space.

5 Behavioral responses

Next we turn to the strategic behaviors that players adopt in response to
their models. In general, a behavioral response a; for player i defines the
conditional probability ¢!(z;[w’ !, a;) that ¢ plays action z; in period ¢, given

the history @’~!. A response a; has memory at most m if

t—1 t—m t—1

¢ (z]@ ™ a;) = ¢t (zi|w'™™, ... w1t ;) for all t > m.

(The responses ¢! (z;|w'*, a;) for 1 < ¢ < m can be chosen arbitrarily and
will be ignored in what follows.)
As before, if a behavioral response a; has memory at most m, there are

M = | X|™ distinct objects on which the conditional probabilities can depend.
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For each of these, the conditional probability can be thought of as a point
in A;. So a; can be thought of as a point in A; = AM which is a subset of
a Fuclidean space. Note that the model space and the response space are

related by

(Vi)  Bi=][A;

J#i
Let A=1].A; and let @ = (ay,...,a,) € A be the players’ responses at a
given point in time. Then the correct model for player i to hold is [];; a;.
The mapping from any response vector @ to the correct model for ¢ will be
denoted by B; : A — B;, where B;(a) = [1;4 a;-
Let p; < 1 be #’s discount factor, so that 7’s utility from time period 1 on
is

Ulw) = (1= p) 3 ot (!
t=1

Here we have normalized by the factor 1 — p; so that e-deviations from best
replies are comparable among players with different discount factors. For the
same reason, we normalize the utilities so that, for each player, the maximum
utility of any stage-game strategy is one and the minimum utility is zero.
(Thus the same upper and lower bounds hold for U} (w).)

Let v, 5, be the probability measure over infinite histories induced by the
response a; and the model b;. Then i’s expected utility from the pair (a;, b;)
is

E(U} (w)]as, b)) / UL (w)dva, .-
Similarly, if w'~! is an initial history, the future stream of utilities discounted

to period ¢ is given by

Ul w) = (1 - p;) Zpt' b (w?

t'=t

(If p; = 0 we let U}(w') = u;(w?).) Player i’s expected utility at time ¢ over
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all continuation histories Q(w' 1) is

t
AL

/ dyaiybi
Q(Ut_l)

To simplify the notation we shall henceforth write

E(Uf(w)\az, bi, wt_l) =

Uit(aia bz) = E(Uf(w”az’ b, wt—l).

Thus U} (a;, b;) is a random variable where we have suppressed the dependence
on W t. We will say that a; is an optimal response to b; if for all other

responses a;
(V1) Uj(ai, bi) = U} (i, bi)

Given a small o; > 0, a; is a g;-optimal response to b; if
(Vt) (Va;) Uf(ai, bz) 2 Uf(a;, b,) — 0.

Consider an arbitrary response a; and a model b; which has memory at most
m. In general, a g;-optimal response a; need not have memory m or less,
but there exists at least one og;-optimal response that does. Indeed, given
any o;-optimal response a;, we can construct such a g;-optimal response as
follows. For each w'™!, define a response a’ as follows: a’ is the arithmetical
average of the numbers pf(z;|n""!, a;) where n'~! ranges over all length-(t—1)
histories whose last m entries agree with @'~!. Then a! is o;-optimal given
w'~! and b;, and it depends only on the last m entries of @’~!. Thus for each
player i there is a o;-optimal response function from models to strategies of
the form
Al B — A;.

In addition to g;-optimality we shall assume that these response functions
are continuous in b;, in u;() and are diffuse in the sense that each action is

played with positive probability. We shall call such an Aj* a o,-smoothed best
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response function and {A]" : 0; > 0} is a family of smoothed best response
functions. The dependence of A]* on U; will not be explicitly notated but

will be used in the theorem.

5.1 Hypothesis tests

In each period t, let b denote the model that player ¢ has at that time. Every
so often ¢ subjects his current model to a hypothesis test. A null hypothesis
H, is a statement of the form “the real process generating the actions from
time ¢ on is described by the pair (A7*(b}),b}).” Since b; € B; = [1;4; A;, we
see that a hypothesis lies in the space A = [[; A;. An alternative hypothesis
H, is another probability distribution in A. The hypothesis Hj is rejected if
the data fall into the rejection region determined by the test.

If 7 is not conducting a test at the beginning of period %y, he begins a

4 Over the next s; periods he collects data

new test with probability 1/s;.
on how the process evolves. During this test phase, he continues to play
A% (bl0), because his model has not yet changed. At the end of period t; + s;
he conducts the test, and either accepts the hypothesis or rejects it. If it is
accepted, the model doesn’t change next period, that is, b§°+s"+1 = bl°. If the

. 1 .
b5t according to a

hypothesis is rejected, player 7 chooses a new model
probability measure 7! (b;[wlo*+1). This new model will be held until
the next time that player ¢ conducts a test and the hypothesis is rejected.
We can think of the choice of new hypothesis as being governed by the
realization of a random variable 8;(@'**) which we suppress for notational
simplicity. The only assumption we make about f; is that the measure of
every To-ball is bounded below by some f,(7y) that is positive for all 75 > 0.

This allows for discrete as well as continuous densities.

“In fact it suffices to assume that the probability of commencing a test is bounded

above by 1 — ¢;/s; and bounded below by ¢;/s; for some constant ¢; > 0.
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5.2 Powerful tests

A standard criterion for being a good test is that it accept the null with high
probability when the null is correct, and reject with high probability when
the null is not correct. To define these ideas formally, let b° be i’s current
model at time ¢y, and let A% (b°) be i’s response. Together, bl and AZ (bL°)
generate a distribution of play paths that we can view as the null distribution
vl = (AZi(bl°),b®). This is the distribution that i thinks is generating the
actions, both his own and others’. Given the data @, let oy, (v}°, @ 1)
denote the probability of rejecting the null when it is correct, that is, of
making a type-I error. Similarly, given an alternative distribution v # v,
let B;, (v, v, w'1) denote the probability of accepting v/° when in fact v

is correct. That is, B, (v, /%, @) is the probability of making a type-II

error, and 1 — i, (v, v}°,@w"™1) is the power of the test.

It is useful to define a variant of 3 that discriminates between hypotheses
that are good approximations of the truth and those that are not. Recall
that a null distribution 1y and any alternative distribution v can be viewed
as points in the space A, and thus we can speak of the “distance” between

the two distributions. Given a small tolerance level 7 > 0, define

_ —t—1
ﬂi,siﬂ' = Ssup sup ﬁi,si (Va Vo, W )
w,t, Vo vilv—wg|>T

This is the least upper bound on making a type-II error when the true dis-

tribution v is more than 7 away from the null 1. Likewise we can define

_ —t—1
G, = SUP iy, (v, ).
[BANZ

A family of tests is powerful if there exist functions &;(7) > 0 and r;(7) > 0

such that, for each tolerance 7 > 0, there is a test in the family such that

Qs < ki(T)e*m(T)si and i, » < ki(T)e*Ti(T)si. 2)
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Powerful families are easy to generate. For example, take any test which
has a5, < .5 and B4, < .5 for some sample size sy. For any s rounds of data
actually collected, divide it up into |s/so| disjoint subsets, each containing
so elements, and ignore the remainder. Further, if [s/sy| is even, throw out
the last subset of size sg. Now compute the result of the test on each of the
k remaining subsets of size sy, where £ is odd. Reject the null if and only if
the null is rejected by the original test on a majority of the subsets. Letting

o = @4, it follows that the probability of incorrectly rejecting the null is at

most
x @ W0t < a ¥ (’;) (a(1 — a)) 2
= 2afda(1 - ) 3 (f) (1/2)"
i>k/2

< afda(l — a))F/A,

By construction, |k/2| > 5% — 2. Further, 4a(1 — @) <1 because o < 1/2.
It follows that

!

1 —r's
ai,sfke )

where
k' = afda(l — a)] ? and 7' = In[4a(1 — a)]/2s0.

Similarly, letting 8 = i s, < 1/2, we have

n_—r"s
Bi,s,’r <k'e

where
K" = B4B(1 — £)] and In[48(1 — §)]/2s0.
Thus,
ais < ke™" and B, < ke,
where

k = max{k', K"} and r = min{r’, r"}.
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Analogously with 3, ,, -, let us define «; 4, , to be the least upper bound
on rejecting the null when the true distribution is within 7 of the null. Note

that 8, < B, whenever 7 < 7" and o, < o whenever 7 < 7'.

Lemma 1 Suppose that under the null hypothesis the conditional probability
of observing any given combination of actions in any period is at least p.
Then for every T > 0,

T\
ai,Si,T < (]' + ;)SZQiasi'

Proof: To simplify the notation we consider first the situation where the
test is applied to data generated in the first s; periods, namely the data w®:.
Denote the null distribution by p(@®), and let R be the rejection set, that is,
the set of @® such that the null is rejected where w® is observed. Let ¢(w®),
be any other distribution that lies within 7 of p, that is, ||¢ — p|| < 7 in the

Euclidean norm. Then we certainly have
('@ — p(W@ )| <7, forallt< s
We wish to show that if p(R) < «, then

g(R) < (1+ ;)sia.

Since p(w'[w'™) > p for each t < s;, we see that
tt—1
q(w If ) <147,
p(w'@™1) p
So,
¢(B) = > q@)

wi€eR

= Y Mot

wiieRt=1

S 10+ Dt @),

TiCcRt=1 p

IN
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The right hand side can be expressed as:
Fi T T, Fi
> A+ pw@) = @1+ 3 [[pwa)
TiER =1 p wHER t=1

- (1+§>Sip<R>,

from which the desired conclusion follows. In the situation where the test is
applied to data generated in periods ¢, ..., t + s; for some ¢t > 0 we replace
p(w®) by the probability of observing the data conditional on @w'~!, and the
argument proceeds in the same way. O
Next we show that, for each tolerance 7, there is a value ¢;(7) < 7 such
that
i ss.ci(r)s Bissir < Ki(T)e mi(Mi/2, (3)
In other words, when the null is sufficiently far from the truth (more than
7), then one accepts with exponentially small probability, whereas when the
null is sufficiently close to the truth (closer than ¢;(7)) then one rejects with
exponentially small probability.
Recall that the probability that ¢ plays each action in each period is h;(0;).
Hence every combination of actions is played with probability [] h;(o;). Let

ci(7) = ([T hi(oj)lri(r) /2. (4)
By the previous lemma,

Cz‘(’r) )
Qi gici(r) < (1 4+ =)0y,
1731502(7—) — ( H hz( Z)) 2,8 (5)

Since 7 employs a powerful family of tests, a; s, < ki(T)e_”(T)si. Thus

ci(t) \” (s
isici(n) < 1 ’ k; ri(7)si

(1 4 T; (T)> kz (T)efTi(’T)Si

2
< eri(T)si/Qki (T)e—ri('r)si

ki (T)e_”(T)Si/Z.

IN
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Thus the inequality (3) holds for o, (r)- It also holds for 3;, , because
Bisiir < ki(T)e i3 < fy(r)erimsil2,

Next we construct a uniform bound analogous to (3) that holds for all .

Namely, let
¢(7) = min ¢ (1),
r(7) = minr;(7)/2,
and k(7) = max k;(T)
Then

(Vi) Qi) Bisir < k(r)e T (6)

We shall say that two agents ¢ and j use comparable amounts of data if
there is a p, 1 < p < 2, such that for every 7 and j, s; < s?. Note that this
is a very weak condition since, if s; and s; are sufficiently large (which is
the case of interest), the ratio of any two agents’ sample sizes can be made
arbitrarily large, and so can the ratio of the power of their tests.

If we define s* = max; s;, and s, = min; s; then we can combine (3) and

(6) to obtain the uniform bound

ai,si,C(T)a 6i,8i,T S k(T)e_T(T)S* . (7)

5.3 Prediction

We shall say that player ¢ is an e-good predictor if the mean square error of
his predictions is almost surely bounded above by € as t — oo. Specifically,
player 7 is an e-good predictor if

1 T
lim sup T > (b — Bi(@))’ <e as. (8)

T—oo i—1

This condition implies that, for any set of actions z_;, and any realization

of the random process to date, the conditional probability that b! assigns to
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the occurrence of x_; in period ¢ comes within € of the actual probability of
its occurrence, except possibly for a sparse set of times. (We remark that
this condition is weaker than the one used by Kalai and Lehrer (1993) who
require that, for every ¢ > 0 there is a time ¢, such that the conditional

probabilities come within e of the actual behavior for all times ¢ > t..)

6 Proof of the main result

Let X =[] X; be a finite state space and write G(u, X) for the stage game
on X defined by the utility functions @ = {uy, ..., un}, u; : X — R. We shall
say that a property of a learning process is robust if it holds independently
of the payoff functions «. Our first theorem gives some robust properties of

hypothesis testers.

Theorem 1 Suppose that the players adopt hypotheses with finite memory,
have o;-smoothed best response functions, employ powerful hypothesis tests
with comparable amounts of data, and are flexible in the adoption of new hy-
potheses. Given any € > 0, if the o; are small (given €), if the test tolerances
7; are sufficiently fine (given € and o;) and if the amounts of data collected,

si, are sufficiently large (given €, o; and T) then:

1. The repeated-game strategies are e-equilibria of the repeated game
G*(u, X) at least 1 — € of the time.

2. All players for whom prediction matters by at least € are e-good predic-

tors.

Thus the property of being an e-equilibrium most of the time does not
depend on the utility functions—it suffices that the responses are sufficiently
sharp, the test tolerances are sufficiently fine, and the sample sizes are suffi-
ciently large. Similarly, the property of being an e-good predictor is robust

for those players who care enough about prediction.
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In preparation for proving theorem 1, we recall some earlier notation. Let
A; be the set of responses for player ¢ that have memory at most m. Let
B; = [1,.; Aj be the set of models for player i that have memory at most m.
In general, a; € A; will denote a response for i, whereas b; € B; will denote
a model. A vector of responses will be denoted by @ = (ay,...,a,), and the
space of such response-tuples will be denoted A = []; A;. Similarly, a vector
of models will be denoted by b = (b1,...,b,), and its associated space by
B =11; B;. A hypothesis for i is a pair v; = (a;, b;), where a; = A7 (b;).

If the players hold models b at time t, then the distributions generating
the process are

A% Br— A,

=

Aa(b) = (Atlfl (bl)a Tt Agl (bl)a Tt AZ“ (bn))

Given a vector of responses @, the correct models are given by the function

B: A— B,
B(EL’):(Haj,...,Haj,...,Haj).
j#1 J#i j#n

A model fixed point is a solution b of

=,

BA(B) =¥,

whereas a response fized point is a solution of

A%(B(@)) = d.
Of course these are equivalent in the sense that b is a model fixed point if
and only if AE(I;) is a response fixed point, and @ is a response fixed point if
and only if B(@) is a model fixed point. The existence of such fixed points
follows from the fact that both maps are continuous functions from compact

convex spaces to themselves.
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Fix a small tolerance level 7 > 0. Given a model vector l;, say that b is

good for i if b; is within 7 of being correct, that is,

|b; — By(A%(b))| < . 9)

Otherwise b is bad for .

The gist of the proof goes as follows. Choose a specific fixed point b*. We
divide the players into two classes: the “unresponsive” players do not care
much about prediction because their payoffs remain more or less the same
independently of the model they have of their opponents; all other players
are “responsive.” Suppose that b is bad for some responsive player. Call this
player the leader and without loss of generality, assume that his index number
is 1. The leader rejects his current hypothesis with high probability after the
next test (assuming that the others’ models stayed at or close to b during his
test phase). Since the leader is responsive, he has a model w; = w; (5) that

invalidates all the other players’ models, namely,
(Vi #1) A7 (wr) — (Bl > 7 (10)

(The proof will have to establish the existence of such a “wrong” model w;.)
Suppose that after rejecting the model b;, the leader chooses a new model
in the vicinity of w;. This causes every player j # 1 to reject his model b,.
When they reject, there is a positive probability that their new models will
all lie very close to the chosen fixed point b*. We can set things up so that
this situation invalidates 1’s model w;. Thus with positive probability, after
1’s next test he too will adopt a model that is very close to b*. If all models
lie close enough to 5*, then it is good. Further, if they are close enough
there is an exponentially small probability that any player’s model will be
rejected after any given test. It follows that the model vector b is good

for all responsive players a large fraction of the time. By choosing the test
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tolerances 7; and the response parameters o; small enough, we can conclude
that the process is an e-equilibrium at least 1 — € of the time.

We now turn to the details. In particular we are going to show that we
can bound the learning parameters such that for every game G on X the
following statements hold at least 1 — € of the time: i) the responses are close
to being a fixed point; ii) the responses are e-optimal; iii) the models are
within € of being correct for all those players who care about prediction at

level e. More precisely we shall establish the following.

Lemma 2 Fiz a finite action space X = [[;—; X;. Given any € > 0, and
any finite memory m, there exist functions o(€), 7(€,0), s(e,0,7) such that
if these functions bound the parameters with the same names, then at least
1 — € of the time t,

1. |at — A%(B(@))| < ¢/2.
2. ‘Uzt(a’fa BZ(C_"'t)) — maxg! Uf(a;, Bz(&'t)” <e fO’f’ all 1.

3. |bt — B;(A% (b"))| < € for every player i for whom prediction matters by

at least €.

Proof of lemma:
We will arbitrarily pick one fixed point of the mapping A o B and des-
ignate it by @*. It follows that b* = B(@*) is a fixed point of B o A°.

Let us choose all o; such that
(Vi) o; <e€/2. (11)

Since each Aj(-) is continuous as a function of b; and as a function of
the stage game payoffs u;, both of which lie in compact domains, there is a
0 > 0 and such that

(ViZ, t,4)(Vbs, b)  [bi — by] < 0 = AT (bs) — AT (b)] <

< % (12)
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and
d < €/2n. (13)

Let d; > 0 be the diameter of the image of A7 (B3;) in the space of i’s

responses, A;. If
d; > 5, (14)

we will say that player i is responsive; otherwise 7 is unresponsive. Notice
that d; may depend on the smoothing parameter, o;, and the stage game
utility, u;, hence responsiveness also depends on o; and u;. The maximum
change in payoff that an unresponsive player ¢ can induce, either for himself
or anyone else, is bounded above by § because the payoffs U!(-, -) lie between
0 and 1. It follows that if prediction matters to a player by more than e
(which is greater than §) then that player must be responsive.

To establish Lemma 2 we shall consider two cases.
Case 1: All players are unresponsive.

Then every possible response of every player ¢ lies within 6 < €/2n of the
optimal response, so statement 1 of the lemma holds. Further, each player’s
utility varies by more at most €/2n < €, so all actions are e-close to optimal
and so statement 2 holds. Finally, statement 3 holds vacuously because there
are no responsive players.

This concludes the proof of case 1.
Case 2: At least one player is responsive.

Fix a small tolerance level 7 > 0 such that

)
T < m (15)

As in the preamble to equation (9) we say that a model vector b is good for
v if

-

b; — B;(A°(b))| < 7. (16)



September 23, 2002 27

Otherwise b is bad for i. A model vector b is all good if it is good for all
players. It is fairly good if it is good for all responsive players, and it is bad if
it is not fairly good. The proof of this case is a consequence of the following

two claims.

Claim 1 If the model vector bt is fairly good at least 1 — € of the time, then

all three statements of Lemma 2 follow.
Claim 2 The model vector bt is fairly good at least 1 — € of the time.

Proof of claim 1:

Equations (15) and (13) imply that 7 < 6 and 6 < €/2n, hence 7 < e.
When b is fairly good, (16) implies that |b; — B;(A%(b))| < € for responsive
players. Responsive players include all players for whom prediction matters
by more than ¢ and hence all players for whom prediction matters by at least
€ (since € > §). This establishes statement 3 of the lemma.

Next we establish statement 1. For every responsive player ¢, (16) im-
plies that |b; — B;(A%(b))| < 7 < 6. It follows from (12) that |A% (b;) —
A% (B;(A% (b)))| < €/2n for each responsive player, that is |a;— A% (B;(a;))] <
€/2n. For each unresponsive player, |a; — A7 (B;(a;))| < 6 < ¢/2n. Putting
these together we get |@ — A7 (B(a))| < €/2.

It remains to show statement 2. For each 4, the response AJ(B;(a"))
involves at most a loss of 0; < €/2 in utility as compared to a best response
to B;(@"), say aj. By statement 1 we know that |a! — A7 (B(a}))| < €/2.
Hence the payoff difference between o} and A7 (B;(@")) is at most €/2, because
the utility functions are bounded between 0 and 1. Hence |Uf(af, B;(a@")) —
Ul(a;, B;(@"))| < €/2+¢€/2 = O

Proof of claim 2:
Recall from (7) that, for each 7, there is a real number 0 < ¢(7) < 7

such that players reject with exponentially small probability whenever their
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models are within ¢(7) of the truth and they reject with probability at least
one-half when there models are at least 7 away from the truth. In particular,
there exist functions k(7) and r(7) such that whenever a player’s model is

within ¢(7) of the correct model, he rejects with probability at most
k(T)efr(fr)s* .

Next, we claim that there is a value v > 0 such that, for our chosen model
fixed point b* = B(a*),

(V) |bi — b} < v == |b; — Bi(A7(D))| < (7). (17)

Indeed, for each i, A7 : B; — A; is continuous on a compact domain so it is

uniformly continuous. Hence there exists v > 0 such that
(i), (Wb € B) b= b <7 = A7 () — AT < A (1)
n

Let us also choose v < ¢(7)/2. It follows from the preceding that

(Vb; € Bi)  |Bi(A7*(b:)) — Bi(A7 (07))| = [Bi( A7 (bi)) — b7 (19)
< o= Deln) _21730(7) (20)
Hence

| Bi(A7 (b)) = bil < [Bi(A7 (b)) — b7 + |67 = ba| < (7).

This establishes (17).

The values of §, 7 and  defined in (13), (15) and (17) will remain fixed
for the rest of the proof.

Next we establish the existence of a “wrong” model for each responsive
player i. Let b be a model vector. For each responsive player i, we can choose

n+ 1 points in the image set AJ*(;) such that no two points are closer than
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27 where 27 = §/(n + 1). Hence there exist at least two of these points, say

a; and a! such that
(Vi #i) |(bj)i — @] = 7 and |(b)i — aj| = T-

Further, one or both of a;,a! is at least 7 from b}. Say without loss of

=,

generality that [} — a}| > 7. Then we define w;(b) to be any model b} such
that A% (b)) = d! and call this a wrong model for i given b.

Define a great state to be a state such that, for every player 4, +’s model is
within 7 of b and no player is currently in a test phase. Beginning at a time
¢ such that the vector bt is bad, consider the following sequence of events

leading to a great state.

Step 1 A responsive player whose model is bad, say 1, starts a new test
phase as soon as all current tests (including possibly his own) are com-
pleted. During 1’s new test phase no other player starts a test. After
1’s new test phase is completed, he rejects his current hypothesis and

adopts a model within ~ of w;. (Duration: at most 2s* periods.)

Step 2 In succession, players 2,3,...,n conduct tests on non-overlapping
sets of data. (Player 1 does not test during this period.) At the end of
each of these n — 1 tests, the tester rejects and adopts a model that is

within «y of b*. (Duration: at most (n — 1)s* periods.)

Step 3 Player 1 starts a test phase and no other players test while it is
in progress. He rejects this test and jumps to a point within v of l_)"{

(Duration: at most s* periods).

Step 4 If the number of periods in steps 1-3 is T < (n + 2)s*, no player
begins a test for the next (n + 2)s* — T periods.

The duration of the whole sequence is exactly (n + 2)s*.
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We now need to compute the probability of a special sequence of this type
occurring conditional on being in a bad state at the start of the sequence.
Ignoring player 1’s first (partial) test phase, each of the subsequent n + 1
test phases ends with a rejection. By choice of the test parameters, each
rejection occurs with probability at least 1/2. After rejection, a target of
radius v must be hit within the rejector’s model space. These n 4+ 1 events
have probability at least (f./2)""!, where f, = f.(7). In addition, each of
the n 4+ 1 test phases must begin at a specific time and no other players can

be testing during another’s phase. The probability of this is at least
((1/5%)(1 = 1/s,) D)t (21)

We can assume that all s; > 2, so (1 —1/s,)% > 1/4. Then (21) is bounded
below by
((1/s%)(1 /)=o)t (22)

Finally, all players must cease testing until (n + 2)s* periods have elapsed

from the start of the sequence. This event has probability at least
(1 _ 1/8*)n(n+2)5* Z 1/4n(n+2)5*/5*. (23)

Putting all of this together there is a positive integer N such that the prob-
ability of steps 1-4 is at least

4—Ns*/s* (f*/S*)n+1. (24)

By assumption s* < s for some p € (1,2), so s*/s, < s where g =p—1 > 0.
Thus there are constants «, 8 > 0 such that the probability of steps 1-4 is

at least as™%e 85! This establishes the following

Lemma 3 If the model vector b is bad, the probability of being in a great
state at time t + (n + 2)s* is at least

n= asthie st (25)
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Suppose that the process is in a great state at time t. Let T be a large
positive integer. We will compute the probability that, over the next T'
periods, no player rejects a test. By construction, each null hypothesis (af, bf)
is within 79 = ¢(7) of the truth. Hence the probability that a given player i

rejects a test is at most
ai,Si,To S koe_TOSi S koe—ros*’ (26)

where ky = k(7o) > 0 and ry = r(1g) > 0.

Over the course of the next 7" periods at most nT'/s, tests are concluded.
Hence the probability that any player rejects a hypothesis during periods
t+1,...,t+ T is bounded above by

(nT/s,)koe™** < Te~*s-. (27)

where the inequality holds for all sufficiently large s, and some k£ > 0.

We will now use what we know about bad states and great states to show
that the fraction of times that the process is in a bad state is very small.
Recall that, conditional on being in a bad state at time ¢, the probability
of being in a great state by time t + (n + 2)s* is at least n by expression
(25). We also know that, conditional on being in a great state at time ¢/,
the probability of staying in good states (states where the model vector is
all good) for at least T periods is at least Te~***. Letting T = €3, this
probability is at least

e ks, (28)

Starting from a given time ¢, let £ be the event “the realized states in at
least €I" of the periods t + 1,...,¢t + 71 are bad.” Let &£ be the sub-event
of £ in which no great state is realized before the last bad state, and let
E" = & — &'. We shall bound the conditional probabilities of £ and £” from

above independently of the state at time ¢.
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If £ occurs, there are at least |eT'/(n+1)s*| = k distinct times ¢ < ¢; <
. <ty <t+T such that the following hold:

o ti1—t;>(n+2)s* forl <j<k,
e the state at time ¢; is bad for 1 < j <&,

e no great state occurs from ¢; to t.

By the preceding, the probability of this event is at most (1—n)F~1 < e~7*k=1),

Note that since € and n are fixed, for all sufficiently large s, we have
k—1> ks
From (25) we have n = ePs* where g < 1. Since 3 is fixed, we have

n > e~ *s« for all sufficiently large s,. Thus,

PE) < (-t

e M(k—1)

IN

ksx
—€
€ 7

IN

which can be made as small as we wish when s, is large. In particular it can
be made less than €/2.
If £” occurs, the process does not stay in good states for at least T periods

after a great state, so from (28)
P(E") < e7ks, (29)

This can also be made less than €/2 when s, is sufficiently large. Putting all

of this together we conclude that, for all sufficiently large s,,
P&)=PE)+PE") <e

Now divide all times ¢ into disjoint blocks of length 7', and let Z; be the
fraction of bad times in the kth block. We have just shown that P(Z, >
€) < e for all k. Hence
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It follows that the proportion of times that the process is in a bad state is
almost surely less than 2e. Rerunning the entire argument with €/2 yields

the desired conclusion.

Proof of Theorem 1:
The first statement of Theorem 1 follows from statement 2 of the lemma.
Likewise the second statement follows from statement 3 of the lemma.
O
If we allow the learning parameters to depend on the payoff functions
defining the stage game G, we can strengthen the conclusions of Theorem 1

as follows.

Theorem 2 Let G be an n-person game on the finite state space X and let
G be the infinitely repeated game of G. Given € > 0, there exist values of

the learning parameters {o;, 7, $;} such that:

1. at least 1 — € of the time the players’ strategies are e-close to being a

subgame perfect equilibrium;

2. all players for whom prediction matters are e-good predictors.

Proof of Theorem 2:

Let G be the stage game with utility functions @. Fix ¢ > 0. There
clearly exists a > 0 such that every player who cares about prediction cares
about it by more than «. Let ¢ = min{c«, ¢}. Lemma 2 (with ¢ in place of ¢)
says that the learning parameters can be chosen so that everyone for whom
prediction matters more than € is an €¢'-good predictor, and hence an e-good
predictor. Since this includes every player for whom prediction matters at
all, statement 2 of Theorem 2 follows at once.

We now establish the first statement of Theorem 2, namely, that play

is close to being subgame perfect a large fraction of the time. Specifically,
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we are going to show that, at least 1 — € of the time ¢, @ is within € of a
memory-m, subgame perfect equilibrium and @ does not change for at least
1/e periods beginning at time ¢.

Let A%(b) be the best response correspondence (a set valued function),
that is, @ € A6(5) if and only if for every player i, a; is a best response to b;.
Let S denote the set of fixed points of A0 B, that is, S = {d:de AG(B(EL'))}.
Every @ € S generates a subgame perfect equilibrium of the repeated game.

From statement 1 of Lemma 2, we know that |a! — A7(B(d"))| < € for
all i at least 1 — € of the time t. We also know that A — A0 as o; — 0,
that is, every limit point of 47 () is in A%(B). It follows that, by choosing all
o; to be sufficiently small, we can ensure that G* is within 2ne of S at least
1 — € of the time ¢. (Note that this upper bound on the o; may be smaller
than the bound o(¢’) established in Lemma 2, and in fact it may depend on
the payoffs defining G.) By carrying out the argument with €/2n in place of
e, we conclude that whenever |a! — A7 (B(a"))| < €/2n, @ is within € of the
set S of subgame perfect equilibria at time ¢. It remains to be shown that a®*
stays unchanged for at least 1/e periods.

In general call a time ¢ e-steady if no player changes their beliefs for the

next 1/e rounds following ¢.
Claim 3 If s, = mins; > 2n/e® then at least 1 — € of the times are steady.

Proof of claim:

The number of tests completed between ¢ and t+ T is at most n+7/s, <
n+ Te?/2. By choosing T to be sufficiently large, the number of tests is less
than Te?. This means that at least 1 — € of the times between ¢ and ¢ + T
must be followed by at least 1/e times in which no player completes a test,
and hence no player changes her model or her strategy. Thus at least 1 — ¢
of the times between ¢ and ¢ + T must be steady, and so at least 1 — € of all

times are steady. This establishes the claim.
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We have therefore shown that if all o; are sufficiently small, and all s;
are sufficiently large the players will be playing close to an element of S at
least 1 — € of the time and be steady at least 1 — € of the time. Hence they
are both close to subgame perfect and steady at least 1 — 2¢ of the time. By

redoing the argument with e cut in half, we obtain the desired result. O

7 Beliefs

Our results so far have been stated in terms of “models” and “responses.”
These are simplified versions of what is really going on in the repeated game.
In particular, models are naive because they make no allowance for the pos-
sibility they will change when rejected by a test. Let us therefore define
the belief of player 7 at time t3 to be the true conditional probability that
i assigns to the opponents’ actions, Pf(x_i\wt_l,atfl) for all t > t;, includ-
ing conditional probabilities of future changes in 7’s own model. Notice that
these conditional probabilities need not have memory m because the model
a player holds in a given period may depend on the models he held in previ-
ous periods. The question is whether the players are behaving rationally, or
almost rationally, with respect to their beliefs.

Conditional on player ¢’s model not changing from period ¢ to ¢ + 1, his
one-step-ahead conditional probability distribution P; is identical with the
one-step-ahead conditional probability distribution implied by his model. A
player’s model cannot change from ¢ to ¢ + 1 unless he is at the end of
a test phase and he rejects. Thus there are many times when player i’s
one-step-ahead conditional forecast is the same under both his model and
under his beliefs. Furthermore, when a rejection occurs player ¢ adopts a
new hypothesis that is within \; of his previous hypothesis with probability
at least 1 — \;. For any given discount factors, we can choose the \; small

enough so that the difference in the expected discounted payoffs between the
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models and the beliefs are within €/2 of each other. (This uses the fact that
the stage-game payoffs are bounded.) Thus, if the level of conservatism is
high enough, a response that is an €¢/2-best reply to one of the distributions
will be an e-best reply to the other. It follows that at every time ¢ each

player’s choice of response is an e-best reply to his belief.

Corollary 1 If the players are sufficiently conservative, have sufficiently
sharp best responses and employ sufficiently powerful hypothesis tests with
sufficiently fine tolerances, then at all times the hypothesis testing strategies

are e-best responses to their beliefs.

8 Convergence in probability

In conclusion, we remark that we can obtain even sharper convergence results
by allowing the parameters to change over time as in simulated annealing.
Specifically, for a given game G and a given any € > 0, Theorem 2 guarantees
levels of the parameters o;(¢), 7;(€) and s;(¢€) such the strategies are an e-close
to a subgame perfect equilibrium at least 1 — € of the time. Now assume
that at the end of each period, we tighten the parameters to the values
oi(€/2), 1i(¢/2) and s;(€/2) with some small probability p(¢) > 0. Then we
tighten the parameters again, using an even smaller probability p(e/2) and
so forth. These tightening probabilities can be chosen so that, after the kth
tightening, the process has time to come within €/2* of the set of subgame
perfect equilibria with probability at least 1 — /2% before the next tightening
occurs. In this manner we can construct a learning process such that the
strategies come arbitrarily close to the set of subgame perfect equilibria an

arbitrarily large fraction of the time from arbitrary initial conditions.

Theorem 3 There exists a learning process based on hypothesis testing such

that, at each point in time, the players’ strategies are almost optimal given
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their beliefs and the strategies converge in probability to the set of subgame

perfect equilibria.

References

e Brown, G.W. (1951): “Iterative Solutions of Games by Fictitious Play,”
in Activity Analysis of Production and Allocation, T. C. Koopmans, ed.,
New York, Wiley, 374 - 376.

e Foster, Dean P. (1999): “A proof of calibration via Blackwell’s ap-

proachability theorem,” Games and Economic Behavior, 29, 73 - 78.

e Foster, Dean P. and R. V. Vohra (1997): “Calibrated learning and

correlated equilibrium,” Games and Economic Behavior, 21, 40-55.
e — (1998): “Asymptotic calibration,” Biometrika, 85, 379 - 390.

e — (1999): “Regret in the on-line decision problem,” Games and Eco-
nomic Behavior, 29, 7 - 35.

e Foster, Dean P., and H. Peyton Young (1998a): “On the nonconver-
gence of fictitious play in coordination games,” Games and Economic
Behavior, 25, 79 - 91.

e Foster, Dean P. and H. Peyton Young, (1998b) “Learning with Hazy
Beliefs,” in Game Theory, Fxperience, Rationality, ed. by W. Leinfell-

ner and E. Koehler. Amsterdam: Kluwer.

e — (2001): “On the impossibility of predicting the behavior of rational
agents,” Proceedings of the National Academy of Sciences, USA, 98, no
22, 12848 - 12853.



September 23, 2002 38

e Fudenberg, Drew and David K. Levine (1995): “Universal consisten-
¢y and cautious fictitious play,” Journal of Economic Dynamics and
Control, 19, 1065 - 1089.

e — (1999a): “Conditional universal consistency,” Games and Economic
Behavior, 29, 104 - 130.

e — (1999b): “An easier way to calibrate,” Games and Economic Be-
havior, 29, 131 - 138.

e Hart, Sergiu, and Andreu Mas-Colell, (2000): “A simple adaptive pro-
cedure leading to correlated equilibrium,” Econometrica, 68, 1127 -
1150.

e — (2001): “A general class of adaptive strategies,” Economic Theory
98, 26 - 54.

e Jehiel, Phillippe (1995): “Limited horizon forecast in repeated alter-
nate games,” Journal of Economic Theory, 67, 497 - 519.

e — (1998): “Learning to play limited foresight equilibria,” Games and
Economic Behavior, 22, 274 - 298.

e Jordan, James S. (1991): “Bayesian learning in normal form games,”

Games and Economic Behavior, 3, 60 - 91.

e — (1992): “Bayesian Learning in games: A non-Bayesian perspective,”

Preprint, University of Minnesota.

e — (1993): “Three problems in learning mixed-strategy equilibria,”
Games and Economic Behavior, 5, 368 - 386.

e — (1995): “Bayesian learning in normal form games,” Games and E-

conomic Behavior, 9, 8 - 20.



September 23, 2002 39

e Kalai, Ehud, and Ehud Lehrer, (1993): “Rational learning leads to
Nash equilibrium,” Econometrica, 61, 1019 - 1045.

e Krishna, Vijay (1992):, “Learning in games with strategic complemen-

J

tarities,” mimeo, Pennsylvania State Univ., University Park, PA.

e McKelvey, Richard and Thomas Palfrey (1995) “Quantal response e-
quilibria for normal form games,” Games and Economic Behavior, 10,
6 - 38.

e Milgrom, Paul and Roberts, John (1991): “Adaptive and sophisticated
learning in normal form games,” Games and Economic Behauvior, 3, 82

- 100.

e Miller, Ronald I. and Chris William Sanchirico, (1997): “Almost every-
body disagrees almost all of the time: The genericity of weakly-merging
nowhere.” Department of Economics, Columbia University, Working
paper 9697-25.

e — (1999): “The role of absolute continuity in “Merging of Opinions”

and “rational learning”,” Games and Economic Behavior, 29, 170 -190.

e Monderer, Dov, and Lloyd Shapley (1996): “Potential Games,” Games
and Economic Behavior, 14, 124 - 143.

e Nachbar, John H. (1997): “Prediction, optimization, and learning in

games,” Econometrica, 65, 275 - 3009.

e — (1999): “Rational Bayesian learning in repeated games.” Working

paper, Department of Economics, Washington University, St. Louis.

e — (2001): “Bayesian Learning in Repeated Games of Incomplete In-
formation,” Social Choice and Welfare, 18, 303 - 326.



September 23, 2002 40

e Nyarko, Yao (1994): “Bayesian learning leads to correlated equilibria

in normal form games,” Economic Theory, 4, 821-841.

e — (1997): “Savage-Bayesian agents play a repeated game,” in The Dy-
namics of Norms, C. Bicchieri, R. Jeffrey, and B. Skyrms, eds. Cam-
bridge, UK: Cambridge University Press.

e Robinson, J. (1951): “An iterative method of solving a game,” Ann.
Math., 54, 296 - 301.

” in Advances

e Shapley, L. S. (1964): “Some topics in two-person games,’
in Game Theory M. Dresher, L. S. Shapley, and A. W. Tucker, eds.,

pp- 1 - 28, Princeton, NJ: Princeton Univ. Press.



