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Abstract

We present a new method for testing whether the returns from a financial asset
are systematically higher than a perfectly efficient market would allow. Such an
asset is said to have positive alpha. The standard way of estimating alpha is to
regress the asset’s returns against the market returns over an extended period of
time and to apply the t-test. The difficulty is that the residuals often fail to satisfy
independence and normality. In fact, portfolio managers may have an incentive
to employ strategies whose residuals depart by design from independence and
normality. To address these problems we propose a robust test for alpha based
on the martingale maximal inequality. Unlike the t-test, our test places no
restrictions on the distribution of returns while retaining substantial statistical
power. We illustrate the method for four assets: a stock, a mutual fund, a hedge
fund, and a fabricated fund that is deliberately designed to fool standard tests of

significance.



1. Estimating alpha

An asset that consistently delivers higher returns than a broad-based market
portfolio is said to have positive alpha. This is the excess return that results from
the asset manager’s superior skill in exploiting arbitrage opportunities and
judging the risks and rewards associated with various investments. But how can
investors (and statisticians) tell from historical data whether a given portfolio
actually is generating positive alpha relative to the market? To answer this
question one must address four issues: i) multiplicity; ii) trends; iii) cross-
sectional correlation; iv) robustness. We begin by reviewing standard
adjustments for the first three; this will set the stage for our approach to the
robustness issue, which involves a novel application of the martingale maximal

inequality (Doob, 1953).

The first step in evaluating the historical performance of a financial asset requires
adjusting for multiplicity. Assets are seldom considered in isolation: investors
can choose among hundreds or thousands of stocks, bonds, mutual funds, hedge
funds, and other financial products. Without adjusting for multiplicity, statistical
tests of significance can be seriously misleading. To take a trivial example, if we
were to test individually whether each of 100 mutual funds “beats the market” at
level a = 0.05, we would expect to find five statistically significant p-values when

in fact none of them beats the market.

Statisticians are well-versed in the dangers of searching for the most statistically

significant hypotheses in data and have developed a wide variety of procedures



to correct for multiple comparisons. The simplest and most easily used of these is
the Bonferroni rule. When testing m hypotheses simultaneously, one compares
the observed p-values to an appropriately reduced threshold. For example,

instead of comparing each p-value p, to a threshold such as a = 0.05, one would

compare them to the reduced threshold o/m.

Modern alternatives to Bonferroni have extended it in two directions. The first,
called alpha spending, allows the splitting of the alpha into uneven pieces; see
for example Pocock (1977) and O'Brien and Fleming (1979). The second group of
extensions provides more power when several different hypotheses are being
tested. These can be motivated from many perspectives: false discovery rate
(Benjamini and Hochberg 1995), Bayesian (George and Foster, 2000), information
theory (Stine, 2004) and frequentist risk (Abramovich, Benjamini, Donoho, and
Johnstone, 2006). One can even apply several of these approaches
simultaneously (Foster and Stine 2007). In the case of financial markets,
however, the natural null hypothesis is that no asset can beat the market for an
extended period of time because this would create exploitable arbitrage
opportunities. Thus, in this setting, the key issue is whether anything beats the

market, let alone whether multiple assets can beat the market.

A second key issue in evaluating the historical performance of different assets is
the need to de-trend the data. This is particularly important for financial assets,
which generally exhibit a strong upward trend due to compounding. Consider,
for example, the price series shown in Figure 1 for four quite different types of

assets. The top two panels represent the value over time of a long-running



general mutual fund (Fidelity Puritan), and the stock of a diversified company
(Berkshire Hathaway) that is famous for its superior performance over a long
period of time. The two assets in the lower panels represent managed funds that
follow dynamic investment strategies that we shall describe in more detail later
on. The Team Fund is based on a dynamic rebalancing algorithm that seeks to
reduce volatility while maintaining high returns (Gerth, 1999; Agnew, 2002). The
Piggyback Fund is based on an options trading strategy that is designed to fool
investors into believing that the fund is generating excess returns when in

expectation it is not (Foster and Young, 2007; for a related construction see Lo,

2001).
Fidelity Puritan Berkshire Hathaway
= =
= =
[ [
= =
Lz 7 z 7
Z g | £ 3
£ A ¢ a8
E oo E o
=2 =2
E E E B -
O i O i3]
= | =
= T T T T T B e e N N
1960 1970 1980 1990 2000 2010 1980 1990 2000 2010
“ear “ear
TEAM Figgy Back
=
o o |
= _| ]
) ml
L ™ ] |
g A z
t o £ 5
E B g B
=2 =2
= E
3 _ =]
O O -
B - g -
T T T T T T T T T
1940 1960 1980 2000 1990 1995 2000 2005
“ear Year

Figure 1. Value of four assets over time



The simplest way to de-trend such data is to study the period-by-period returns
rather than the value of the asset itself. That is, instead of focusing on the value,

V,, one studies the sequence of returns (V, -V, ;)/V, , over successive time periods

t. The hope is that the returns are being generated by a process that is
sufficiently stationary for standard statistical tests to be applied. As we shall see
later on, this hope may not be well-founded given that financial portfolios are

often managed in a way that produces highly nonstationary behavior by design.
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Figure 2. Monthly returns series for the four assets



The third issue, cross-sectional correlation, arises because returns on financial
assets often exhibit a high degree of positive correlation. The standard way to
deal with this problem is the Capital Asset Pricing Model (CAPM), which
partitions the variation in asset returns into two orthogonal components: market
risk, which is non-diversifiable and hence unavoidable, and idiosyncratic risk.
By construction, idiosyncratic risk is orthogonal to market risk and measures the
rewards and risks associated with a specific asset. It is the mean return on this
idiosyncratic risk, known as alpha, that draws investors to specific stocks, mutual

funds, and alternative investment vehicles such as hedge funds.

The standard way to estimate the alpha of a particular asset or portfolio of assets
is to regress its returns against the returns from a broad-based market index such

as the S&P 500 after subtracting out the risk-free return. Specifically, let m, be
the return generated by the market portfolio in period t, and let r, be the risk-

free rate of return during the period, that is, the return available on a safe asset
such as US Treasury bills. The excess return of the market during the t" period is

m,—r,. Let y, be the return in period t from a particular asset (or portfolio of

assets) that we wish to compare with the market. The portfolio’s excess return in

period t is defined as y,—r,. CAPM isolates the idiosyncratic return of the

portfolio from the overall market return by estimating the regression equation

yt_rt:a""ﬂ(mt_rt)"'gt' 1)

The market-adjusted return is defined to be the intercept plus the residual, that is,

a+é, .



The crucial question from the investor’s standpoint is whether the intercept is
positive (a >0). If it is, then the investor could increase his overall return by
investing a portion of his wealth in this portfolio instead of in the market.
Moreover, this increased return could be achieved without exposing himself to
much additional volatility, provided he puts a sufficiently small proportion of his
wealth in the portfolio. Thus the relevant question is whether there exists any asset, or
portfolio of assets, that systematically beats the market in the sense that it exhibits

positive alpha at a high level of significance.

As we have already noted, the standard way to answer this question is to apply a
t-test to the estimate of the intercept. But this is only justified if the residuals
satisfy quite restrictive assumptions, including independence and normality.
When we graph the residuals from our four candidate assets over time, however,
it becomes apparent that two of them (Team and Piggyback) exhibit highly

erratic, nonstationary behavior (see Figures 3-4).
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In the case of Team, the market-adjusted returns are negatively correlated with
the market returns (see Figure 3), and they exhibit a cyclic pattern with bursts of
high volatility followed by periods of low volatility immediately thereafter (see
Figure 4). This is a direct consequence of Team’s dynamic rebalancing strategy.
At any given time the fund is invested in a mixture of cash (earning the risk-free
rate of return) and the S&P 500. At the end of each year funds are moved from
cash to stock if the risk-free rate in that period exceeded the market rate of
return, and from stock to cash if the reverse was true. The target proportions to
maintain between stock and cash are adjusted at the end of each five-year
interval i. (The five-year intervals and target proportions -- 70% stock, 30% cash -

- are chosen purely for purposes of illustration.)

Gerth (1999) proves that if stocks have returns that are independent and
identically distributed, and if the risk-free rate of return is constant, then there
exists a choice of targets such that this strategy yields higher returns than the
market without increasing the level of volatility. Our purpose is not to critique
this approach, but to take it as a concrete example showing why a natural
portfolio management strategy could easily produce returns that by design differ

substantially from the assumptions needed to apply the t-test.

The returns from the Piggyback Fund exhibit even more erratic behavior. The
reasons for this will be discussed in section 3. Suffice it to say here that these
returns are produced by a strategy that is designed to earn the portfolio manager
a lot of money rather than to deliver superior returns to the investors. However,
since the natural aim of portfolio managers is to earn large amounts of money,

statistical tests of significance must accommodate this sort of behavior.
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The purpose of this paper is to introduce a robust test for alpha that is immune to
this type of manipulation. Our test assumes nothing about the distribution of
market-adjusted returns except that they form a martingale difference: neither
independence, constant variance, nor normality are required. The test is simple
to compute and does not depend on the frequency of observations. A
particularly important feature of the test is that it corrects for the possibility that
the manager’s strategy conceals a small risk of a large loss in the tail. This is not
a hypothetical problem: empirical studies using multifactor risk analysis have
shown that many hedge funds have negatively skewed returns and that as a
result the t-test significantly underestimates the left-tail risk (Agarwal and Naik,
2004). Moreover, negatively skewed returns are to be expected, because standard
compensation arrangements give managers an incentive to follow just such

strategies (Foster and Young, 2009).

The plan of the paper is as follows. In section 2 we derive our test in its most
basic form. The basic idea is first to correct for market correlation by computing
the market-adjusted returns as in (1), then compound these returns and test
whether they form a martingale. Section 3 shows why it is vital to have a test
that, unlike the t-test, is robust to distributional assumptions. In particular, we
show that the t-test leads to a false degree of confidence in the Piggyback Fund,
which is constructed so that it looks like it produces positive alpha when this is
not actually the case. Section 4 extends the approach to test whether one or more
assets out of a given population of assets is producing positive alpha at a high

level of significance.
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In section 5 we show how to ramp up the statistical power of this approach by
leveraging the asset. We show, in particular, that if the returns of the asset are
lognormally distributed with known variance, then we can choose a level of
leverage such that the loss in power is quite modest relative to the optimal test
(which in this case is the t-test). In fact, for a p-value of .01 the loss in power is

less than 30%, and for a p-value of .001 the loss in power is only about 20%.

In section 6 we consider the more general situation in which we know nothing ex
ante about the asset’s true distribution. In spite of this we can use leverage to
advantage by applying different levels of leverage to the asset in question. This
results in a population of leveraged assets to which we apply PERT. The essential
point is that the best level of leverage (which we do not know in advance) results
in exponentially higher rates of growth than other levels. Hence the compound
excess return test applied to the population (PERT) can come quite close to the
compound excess return test applied to the best level of leverage. (This result is
closely related to Cover’s work on wuniversal portfolios (Cover, 1991.)

We call this the exponential population excess returns test (EXPERT).

In the final section we apply this test to our four candidate assets. It turns out
that, after correcting for multiplicity, market correlation, and unrealized
downside risk, the only asset that plausibly delivers positive alpha is Berkshire
Hathaway, even though two of the others (Fidelity, and Piggyback) look quite

impressive at first sight.
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2. The compound excess returns test (CERT)

Consider a financial asset, such as a stock, a mutual fund, or a hedge fund whose
performance we wish to compare with that of the market. The data consist of
returns generated by the asset over a series of reporting periods t=12,..,T.
Denote the market return in period t by the random variable M, and the asset’s
return by the random variable Y,, where by definition M,,Y, >0. In applications,

M, would be the return on a broad-based portfolio of stocks such as the S&P 500.

The first step in our analysis is to subtract off the risk-free rate of return in each

period, that is, the rate available on a safe asset such as Treasury bills. Letting r,

denote the risk-free rate in period ¢, define the random variables

M =M -1, Y =Y —r. )
The second step is to correct for correlation with the market. Let

_ Cov(Y,M)
~ var(M)

B
In practice B can either be estimated directly from historical data or by

analyzing the composition of the asset in question. An important point to notice

is that f can be estimated accurately using short-term data (e.g., daily returns)

because it measures the extent to which the returns are correlated with the

market, not their magnitude. (Thus with sufficiently high frequency data one

13



could estimate the correlation coefficient period by period, i.e., monthly or

quarterly.) The market-adjusted return or alpha in period ¢ is

A =Y, - BM,. (4)

The null hypothesis is that the conditional expectation of A is zero in every period

t, that is,

vt<T, E[A|A...A,]=0. (5)

This is equivalent to saying that the compound growth of the market-adjusted

returns forms a nonnegative martingale

Null Hypothesis: C, =[] A+ A) is a nonnegative martingale. (6)

1<s<t

Compound Excess Return Test (CERT). For each t, 1<t<T, let C, >0 be the

compound market-adjusted return of a candidate asset through period t. The CERT p-

value for testing the null hypothesis is

p= minlstsT (1/ Ct) . (7)

The proof is a straightforward application of the martingale maximal inequality,
which for convenience we shall derive here (Doob, 1953). Under our

assumptions, C, is a nonnegative martingale with conditional expectation 1 in

every period. Given a real number y >0, define the random time T (y) to be the

14



first time t<T such that C, >y if such a time exists, otherwise let T(y) =T . By
the optional stopping theorem, E[C;  ]1=1. (See Doob, 1953, Theorem 2.1.)

Clearly, if max,,,C,>y then C; >y, hence P(max_.C,>y)<P(C; ,27).

1<s<t

Since C;,, is nonnegative, P(C;, >7) <E[C, ,]/y=1/y. It follows that

T(») T(»)

P(max,.,C,2y)<1/y. (8)

It follows that the sequence C,,C,,..,C; of compound excess returns was

generated with probability at most min_,_; (1/C,). [

Notice that the length of the series is immaterial: what matters is the maximum
compound return that was achieved at some point during the series. Moreover,
the compound returns must be very large for the null hypothesis to be rejected.
For example, to reject the null at the 5% level of significance requires that the
asset grow twenty-fold after subtracting off the risk-free rate and correcting for
correlation with the market. Two of the four funds meet this test (Fidelity and
Berkshire) as may be seen from Figure 5, which shows the compound value of

each asset’s market-adjusted returns.

Table 1 compares the p-values from CERT with those from the t-test. According
to the latter, Berkshire, Fidelity, and Piggyback have positive alpha at a high
level of significance and Piggyback is particularly impressive. By contrast, CERT
says that we should be confident in Berkshire, which has a CERT p-value equal to

.011, but not in any of the others.

15



Fidelity Puritan Berkshire Hathaway

o W
i [=T
o o Ln
[ L
o (' o |
E oo T~
[=] [=] =
o o
5 5
O o | [E R
T T T T T T = T T T T 1
18960 1970 1880 1890 2000 2010 1850 18580 2000 2010
Wear “ear
TEAM Figyy Back
‘G"_ _ -~
[] FRR T
£y g
: i
[=] [=] oy -
o j=3
E® E
O = 4
T T T T T L T T T
1940 1960 1930 2000 1850 1995 2000 2005
Wear Wear

Figure 5. Compound value of market-adjusted returns for the four assets

Asset Regression t  Regression p-value ~ CERT p-value ~ CERT “t”

Fidelity 3.23 0.0013 0.37 0.33
Berkshire 4.03 6.7x10°° 0.011 2.30
Team 0.23 0.82 0.96 -1.77
Piggyback  16.79 1.3x10™* 0.15 1.03

Table 1. Regression p-values versus CERT p-values for the four assets.

[CERT “t” is the value of the t-statistic that corresponds to the given p-value. ]
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3. Gaming the t-test.

At first it might seem counterintuitive that one would need to see a fund
outperform the market by at least twenty-fold in order to be reasonably confident
(at the 5% level of significance) that the outperformance is “for real.” The reason
is that an apparently stellar performance can be driven by strategies that lead to a
total loss with positive probability but a very long time can elapse before the loss
materializes. Indeed, it is easy to construct strategies of this nature for which the

CERT bound is tight. Choose a number y>1, and consider the following

nonnegative martingale with conditional expectation 1

C,=1 P =y"C)=y"", PEC,=0)=1-y"" for 1<t<T. )

In each period the fund compounds by the factor " with probability ™" and
crashes with probability 1-y V" . Thus the probability that the fund’s compound

excess return C, exceeds y is precisely 1/y over any number of periods T.!

The Piggyback Fund was constructed along just these lines. Namely, the fund
was invested in the S&P 500, and the returns reported every month. However,
once every six months the returns were artificially boosted by the factor 1.02.
This was done by taking an options position in the S&P 500 that would bankrupt
the fund if the options were exercised. The strike price was chosen so that the

probability of this event was 1/1.02=.9804, so the fair value of the option is zero.?

1 Returns series with this property can be constructed using standard options contracts (Foster
and Young, 2009).

2 With probability 1/1.02 the fund grows by the factor 1.02 and with probability .02/1.02 it loses
everything, which is a lottery with expectation zero.
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This explains the bizarre pattern of the market-adjusted residuals in Figure 3:
one-sixth of the time they are + 2%, and five-sixths of the time they are - 2% .
With less than 25 years of data there is a sizable probability that the downside
risk will never be realized, and investors will be lulled into thinking that the fund
is generating positive alpha. This is why CERT attaches a very modest p-value to

the returns generated by the Piggyback Fund.

Of course, even a casual inspection of the residuals in Figure 3 suggests that the
t-test should not be used in this case. However this is not the essence of the
problem, because it is easy to construct “piggyback strategies” whose returns
look i.i.d. normal. Namely, suppose that every month the manager boosts the
fund’s returns by the factor 1.00334 where A is a lognormally distributed error
with mean 1 and small variance. (The purpose of the error is to lend a plausible
amount of variability to the realized returns.) As before, the boost comes at the
cost of going bankrupt with probability 1/(1.00331)~.9967/4 each month.
Assuming that the variance of A4 is small, this scheme will run for about 300
months (25 years) before the fund goes bankrupt, and the residuals will look
very convincing. Thus, in this case the t-test would seem to be appropriate, and
the estimate of alpha will be about 4% per year at a very high level of
significance. This is misleading, however, because in reality the distribution of
returns is not approximately normal -- there is a large potential loss hidden in the
tail. One of the main virtues of CERT is that it corrects for this “hidden
volatility”: under CERT the p-value of this scheme after 25 years will only be
about p =(1.0033)°% ~.37.

18



4. Multiplicity, Bonferroni, and the portfolio test.

The test described above is for returns generated by a single fund. In practice,
investors would like to identify those funds from a given population that generate
positive alpha with high probability. This requires a more demanding test of
significance. To illustrate, suppose that we can observe the returns for each of n

funds over the same time frame t=12,...,T. Let Cti be the compound excess

return for fund i through period t. Suppose that we observe a particular fund,
say i*, whose returns are sufficiently high that we would reject the null at the
5% level using CERT. This does not mean we have 95% confidence that fund i*
is generating positive alpha. Suppose, in fact, that none of the n funds is able to
generate positive alpha and that the excess returns are stochastically
independent. It is straightforward to construct n independent nonnegative
martingales, each with expectation 1, such that on average there will be .05n

funds that exceed the critical threshold c. For example, out of 1000 funds there

will, on average, be 50 funds that pass the single-fund threshold even though

none of the funds is actually generating positive alpha.

More generally, suppose that we observe n nonnegative martingales C!,1<i<n,
over the periods 1<t<T . Let the null hypothesis H, be that E[C/|c/,....C| ,]=1
for all i and for all t, where the C, are assumed to be independent across i for

each t. By the martingale maximal inequality we know that

vc >0, P(max,... C/ >c)<c. (10)

Hence
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vc >0, P(max,_,_, max,..C/ >c)<n/c. (11)

1<i<n

It follows that, to reject H, at level p > 0, there must exist one or more funds i such

that

Max,... C; >n/p. (12)

We call this test Bonferroni-CERT. (The idea is quite general and applies to any
situation in which multiple hypothesis tests are being conducted; see Miller,
1981.) In the present case the test suggests that we should not be confident that
any of the four assets exhibits positive alpha. The reason is that the only one that
passes muster at an individual level is Berkshire, which we cherry-picked from
the S&P 500. To be confident that the best of 500 stocks generated positive alpha
at the 5% level of significance, would require that the stock’s market-adjusted
returns compound by a factor of at least 500 x 20 = 10,000. While this might seem
like an impossibly high hurdle, we shall show in the next section that there are

more powerful versions of the test that make such values achievable.

Before considering this issue, however, let us observe that there is a simple and
powerful alternative to Bonferroni-CERT that works when one wants to know
whether one or more assets in a given population has positive alpha without
identifying which particular asset (or assets) that might be. This test, called the
Portfolio Excess Returns Test (PERT), relies on the fact that any weighted

combination of assets that have zero alpha must also have zero alpha.
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Portfolio Excess Returns Test (PERT). Consider a family of n funds, where each

fund i generates a series of compound excess returns C/,C,,..,C; over T periods.

Create a portfolio consisting of equal amounts invested initially in each of the funds. The

portfolio’s compound return series is given by C, :(1/n)z C/, 1<t<T. The null

I<i<n

hypothesis that none of the funds has positive alpha has p-value min,,_; (1/C,).

The proof is more or less immediate. Each of the n funds generates a

nonnegative martingale of excess returns Cti that may nor may not be

independent across funds. The investor’s portfolio is the nonnegative martingale

C,=(@/n)>  C/. The assumption that none of the funds exhibits positive alpha

1<i<n

implies that the conditional expectation of C, equals 1 in every period. The

conclusion follows at once from the martingale maximal inequality.

Note that this test is at least as powerful as the Bonferroni test: the latter rejects

only if C! >n/p, but in this event C, >1/ p, which implies that the portfolio test

rejects also.

5. Power and leverage

While CERT and PERT are robust, they are also very conservative. In the next
two sections we shall show that much more powerful variants of these tests can
be devised by leveraging the asset under scrutiny. Let us begin by considering
the special case in which the returns are known to be i.i.d. lognormal, in which
case the optimal test of significance is the f-test applied to the logged returns. We

shall show that by leveraging the asset at an appropriate level we obtain an

21



exponentiated form of CERT (EXCERT) that involves only a modest loss of

power compared to the optimal test.

To be concrete, consider a manager whose fund is generating compound returns

C, 20 relative to the risk-free rate and suppose for simplicity that there is no
correlation with the market (f#=0). We shall assume that C, is lognormally

distributed:

logC, ~ N((u-0o?12)t,5°t) 3 (13)

When the asset is leveraged by the factor 4 >0, the compound returns at time f,

C,(1), are described by the process

logC, (1) ~ N((Au — A%c? | 2)t, A2ct) 4 (14)

Suppose that is o? is known and g is not. The null hypothesis is that 4 =0and
the alternative hypothesis is that x4 >0. Choose a p-value p>0 and a time t at

which a test of significance is to be conducted. CERT rejects the null at level p if

and only if

logC, >log(l/ p). (15)

3 This is consistent with the traditional representation of asset returns as a geometric Brownian
motion in continuous time dC = xC dt + oC dW, (Berndt, 1996; Campbell, Lo, and MacKinlay,
1997).

¢ To leverage an asset by the factor A one borrows A -1 dollars at the risk-free rate and invests A
dollars in the asset. If A <1 this means that 1 -2 is invested in the risk-free asset and the
remainder in the risky asset. Notice that to keep a constant level of leverage one will typically
need to rebalance the absolute amounts invested in each asset over time. In continuous time this

yields the process dC, = AuC dt+ AcC dW, .
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Under the null hypothesis,

_logC, +(c’/2)t

t O'\/f

z is N(0,1). (16)

Hence CERT rejects the null if and only if

 log(/ p)+(c? /2t

t O'\/f

z

(17)

To maximize the power of the test we choose the leverage so that the probability
of rejection is maximized. This occurs when the right-hand side of (17) is

minimized, that is, when

4*:—@5%’@ . (18)

Definition. EXCERT (exponential CERT) is CERT applied to the asset leveraged by

the amount 4*.
Notice that 4* depends on the variance of the process, the time at which the test

is conducted, and the level of significance p. However, the corresponding z-

value depends only on p, that is, EXCERT rejects if and only if

Z,>42log(l/ p) =c,, (19)
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that is, c,is the critical value for EXCERT at significance level p Let us compare

this with the critical value of the t-test, which rejects at level p if null at level p if
and only if
Z,>0'(1-p)=1z,. (20)

The power loss at significance level p, L(p), is the maximum probability that for
some combination of u,o,t, the t-test rejects the null at level p when EXCERT

accepts.

Proposition 1. L(p)=2®(.5(c,-z,))-1 and IimFHO+ L(p)=0.

The proof is given in the Appendix. The first expression in the proposition can

be used to numerically compute L(p), and the results are illustrated in Figure 6.

The loss in power is around 20-25% for p in the range 10~ to 10~°, which is the
relevant range when we test for the best of n assets and n is on the order of

several hundred or several thousand.

L(p)

1.0
|

o.sl

1 2 3 4 s ~log,p

Figure 6. Power loss function L(p) for EXCERT compared to the t-test.
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6. Leveraging CERT when the variance is unknown

The situation considered in the preceding section is quite special in that the
distribution of returns was assumed to be i.i.d. lognormal with known variance.
Here we introduce an alternative version of the test that is more robust and is
asymptotically just as powerful. To apply this test, all we need to know is the
maximum leverage that can be applied to the asset under consideration without
causing negative realizations; in other words it suffices to know the maximum

downside loss that the asset can suffer in any given period.

Consider an asset whose market-adjusted returns A are bounded below by
—¢>-1. Then the random variable M/ =(1+ A /$) is nonnegative, that is, the
maximum permissible level of leverage is 1/¢. The null hypothesis is that
E[A]=0, which implies that E[A /¢#]=0. Indeed the null hypothesis holds for

every level of leverage in the range 0<A<1/¢:

Null hypothesis: VA, 0< A<1/¢, C/ =[] @+AA)is a nonnegative martingale.

I<s<t

Let us now construct a family of funds that are based on the given asset {A},
where each fund operates under a different level of leverage 0<A<1/¢.

Suppose, for example, that we weight all feasible levels of leverage equally. We

then obtain a population of funds whose total value at time is given by

C =4[, T]@+an)2. (21)

I<s<t
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More generally, consider any density f(A1) that is bounded away from zero on
an interval [a,b]<[0,1/¢] where J-: f(1)dA=1. We can construct a family of

funds with compound returns

C, :jb F]] a+4A)A. 22)

1<s<t

Under the null hypothesis, any such fund has compound returns that form a nonnegative

martingale. Hence we can reject the null hypothesis at level p if

c=[ fW[]a+aaxa>1/p. (23)

1<s<t

Any test of this form will be called an exponential population excess returns test
(EXPERT). This type of test is very general and assumes nothing about the

distribution of returns of the underlying asset {A} except that they form a

martingale difference and are bounded away from -1.

Given its generality one might expect that the power of such a test is very low.
In fact, however, it has the same power asymptotically as does EXCERT where
the variance is assumed to be known. The only requirement is that the interval
[a,b] contains the actual value A* that optimizes EXCERT. By choosing the
interval to be as wide as possible, namely [0,1/¢], this requirement will

automatically be satisfied.

26



Proposition 2.  Consider an asset whose returns are lognormally distributed

logC, ~ N((u—0?/2)t,6°t). Suppose that EXPERT is applied at time t to a population

of funds leveraged according to a density that is bounded away from zero on an interval

[a,b]<[0,1/ @] that contains the optimal leverage level. Then for all sufficiently large

times t the loss in power relative to the t-test is well-approximated by L(p).

This result follows from a more general theorem on “universal portfolios” due to

Cover (1991). Let C, be the size of the EXPERT portfolio at time t. Let C, be the

value at t of the portfolio that is leveraged at the optimal level A* using
EXCERT. (This depends, of course, on t, p, and o). Cover’s theorem compares

these values with the value C.” of a third portfolio in which the asset is leveraged

atalevel A" that is chosen ex post to maximize the value of the fund at time t given that
the realized values of the returns from the underlying asset up through t are known.

Clearly C” >C, because C, is optimized ex post whereas C, is optimized ex
ante. Cover’s theorem implies that, for every small & >0, there is a time T, such
that P(C,/C. 21-¢)>1-¢ forall t>T,. It follows that P(C,/C, >1-¢)>1-¢ for
all t>T,. By construction, EXCERT rejects at level p if C; >1/p, whereas
EXPERT rejects at level p if C, >1/ p. It follows that EXPERT has approximately
the same power loss as does EXCERT, namely L(p), at all sufficiently large times

t.°

5 Cover considers portfolios that are convex combinations of a given finite set of assets. This

condition is satisfied because any leveraged portfolio 1+ AA can be represented as a convex
combination of the maximally leveraged portfolio 1+bA and the minimally leveraged portfolio
1+aA . Cover also assumes that the returns from each asset in any given period are nonnegative

and bounded above. To meet this condition we can truncate the lognormal distribution of
returns from the maximally leveraged fund at a level that is several orders of magnitude smaller
than the level p we are testing.
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7. Empirical analysis of the four assets

In this concluding section we shall apply the preceding framework to the four
assets shown in Figures 1-4. As we have already seen, CERT without leveraging
and without correcting for multiplicity leads to the p-values shown in Table 1.
These suggest that Berkshire has positive alpha when viewed in isolation (p =
0.011), but not when culled from five hundred stocks (the S&P 500). However,
we have additional information about the composition of Berkshire (as well as
Fidelity and Team) that allows us to ramp up the leverage. Namely, in each of
these cases they were primarily invested in common stocks and cash and
(according to their annual reports) did not leverage their holdings to any
appreciable extent.® This allows us to estimate the amount of leverage that can be

applied without the fund going bankrupt. We can then apply EXPERT.

More generally we propose the following four-step procedure for testing

whether a given asset has positive alpha:

1. Estimate the correlation coefficient f between the asset’s returns Y, and the

market’s returns M, .”

2. For each t compute the market-adjusted returns A =(Y,-r)- (M, -r,).

6 Berkshire Hathaway is a diversified holding company that invests mainly in the common and
preferred stock of other companies. The Fidelity Puritan Fund invests in a mixture of stocks and
bonds, and rebalances the proportions periodically. By construction, Team holds a combination
of cash and the S&P 500 at each point in time and is not leveraged.

7 Alternatively, one can estimate a rolling correlation coefficient £, using a trailing subsample of

the data.
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3. Estimate the maximum amount of leverage A" that can be applied to the
market-adjusted returns without going bankrupt. For an asset consisting of
liquid common stocks, this can be estimated either from the cost of a put option,
or from the size of the buffer needed to implement a stop-loss order. Here we
shall assume that a stop-loss order on stocks can be executed within 3% of the
limit price, so that one could leverage up to about 33 times without going
negative. (It is not crucial to estimate the upper bound precisely; what matters is
the optimal level of leverage, which will usually be lower than the maximum

possible leverage.)

4. Compute the maximum compound value of the leveraged asset for a selection
of leverage levels between 0 and A*, and let C be the average. The estimated p-
value of the asset is 1/C. Although this estimate will depend on the assumed
distribution of leverage levels, there will typically be a narrow band of leverage
levels that yield vastly higher values of C than do the others. The average C will
depend largely on these critical levels and not on the particular form of the

distribution.

For purposes of illustration we shall evaluate each of the four funds at seven
leverage levels: 1/2, 1, 2, 4, 8, 16, 32.8 As noted above, the choice of these
particular values is not important, what matters is that they cover the range of
possible values reasonably well (in this case 0 - 33) and the same distribution of
values is applied to all the assets being evaluated. The results for Berkshire,
Fidelity, and Team are shown in Table 3. (Note that we cannot apply this method

to the Piggyback Fund, because the maximum level of leverage is not 33; indeed,

8 This approximates the distribution in which log leverage is uniformly distributed..
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the fund is already leveraged to the hilt because it is constructed from options

that will bankrupt the fund with positive probability.)

Leverage Max C-value
Fidelity ~Berkshire Team
0.5 1.7 12 1.0
1 2.7 92 1.0
2 6.7 2,400 1.1
4 31 110,000 12
8 290 230 1.3
16 1,200 3,600 15
32 44 200 1.5
Avg C 225 16,648 1.22
EXPERTp=1/C  .0044 .00006 0.82
EXPERT “t” 3.29 4.41 -0.89
Regression t 3.23 4.03 0.23
Regression p-value ~ .0017 .00007 0.41

Table 3. EXPERT applied to three assets at leverage levels (1/2, 1/,2, 4, 8, 16, 32)
under the assumption that none of the leveraged assets can go negative at

these levels.

Notice that the p-values estimated by our test and by the t-test are in quite close

agreement even though our test makes none of the regularity assumptions

required for the t-test.
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While these p-values would be highly significant for a fund that is viewed in
isolation, however, we need to correct for multiplicity using Bonferroni. In
particular, Berkshire was cherry-picked from the S&P 500, so its EXPERT p-
value, adjusted for multiplicity, is .00006 x 500 = .012. This is still significant but
not impressively so. (And if we consider that Berkshire is just one of thousands
of listed stocks, then the adjusted p-value would not be significant.) Fidelity was
selected from a pool of hundreds of stock mutual funds, so when adjusted for
multiplicity its p-value is not even close to being significant under our test or the
t-test. We conclude that Berkshire has some claim to delivering positive alpha
after correcting for multiplicity, but even it must be viewed as a borderline case.

The other three assets do not even come close.
Appendix: Proof of Proposition 1

We need to show that L(p)=2®(5(c,-z,))-1 and Iimpﬁw L(p)=0. Under the

null hypothesis (¢#=0),

_InC +5(2*0)’t _InC, +.5¢7

Z
‘ ﬂ*oa/f C,

is N(0,1). (A1)

Hence the t-test rejects the null at level p if and only if

InC

Cp

z, <——+.5¢,. (A2)

By contrast, EXCERT accepts the null if and only if InC, <In(1/ p) = .5c,2) , that is,
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InC

t< 5c. . (A3)

Power loss occurs in the region where both (22) and (23) hold. Assume now that

InC,

Cp

, is distributed N(’u—\/f,l) for some x>0. For this g,0,t the loss in
o

power is given by the probability of the event

uf

+.5¢, <c, - (A4)

p

ot _InC ot
(o2

o Cp

The middle term is distributed N(0, 1), so the probability of this event is

\[

0 o, -5 (A5)

uf

o(c, -

ik

=Ll Nt and ¢, ——— are symmetrically

This probability is maximized when z, -
o o

situated about zero. It follows that the power loss function is

L(p) = 20(5(c, -2,)) -1 (A6)

To complete the proof we need to show that ¢, -z, —0"as p—0". To complete
the proof we need to show that ¢, —z, —0"as p —0". Recall that when z is large

the right tail of the normal distribution has the following approximation [Feller,

1957, p.193]:
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—22/2

N2 .

P(Z>2)=

(A7)

Therefore when p is reasonably small, say p<.01, we have the approximation

z, ~J2logz,+2log(27/ p). (A8)

Combining (A6) and (A8) we find, after some manipulation, that

c 7 log z, +.5log(27) - logc, +.5log(27)
PP o 2logip) T 2,

(A9)

Hence ¢, -z, - 0" as p— 0", from which we conclude that L(p) >0 as p—>0".
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