

Linear methods for large data

Dean Foster

(U Penn \rightarrow Yahoo Labs)

A few weeks ago we had Martinsson present:

"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions"

- It is my current favorite paper.
- Today, I'll be applying it to a several problems in ML / statistics

problem Find a low rank approximation to a *n* × *m* matrix *M*. solution Find a $n \times k$ matrix *A* such that $M \approx AA^{\top}M$

problem Find a low rank approximation to a *n* × *m* matrix *M*. solution Find a $n \times k$ matrix A such that $M \approx AA^{\top}M$

Construction *A* is constructed by:

- **1** create a random $m \times k$ matrix Ω (iid normals)
- ² compute *M*Ω
- 3 Compute thin SVD of result: *UDV*^T = MΩ
- $A = U$

FAST MATRIX REGRESSIONS

Toy problem: $p \ll n$:

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
	- Generates provably accurate results.
	- Instead of *np*² time, it runs in *np* time.
	- This is fast! (I.e. as fast as reading the data.)

Toy problem: $p \ll n$:

- Solving least squares: (a la Mahoney)
	- Generates provably accurate results.
	- Instead of *np*² time, it runs in *np* time.
	- This is fast! (I.e. as fast as reading the data.)

• But we should be unimpressed.

Toy problem: *p n*:

- Solving least squares: (a la Mahoney)
	- Generates provably accurate results.
	- Instead of *np*² time, it runs in *np* time.
	- This is fast! (I.e. as fast as reading the data.)

- But we should be unimpressed.
- Alternative fast (but stupid) method:
	- Do least squares on a sub-sample of size *n*/*p*
	- Runs in time *np*.
	- Same accuracy as the fast methods.

A better fast regression

- Create "sub-sample" $\hat{X} \equiv A^\top X$
- **o** Estimate

$$
\hat{\beta} = (\hat{X}^\top \hat{X})^{-1} X^\top Y
$$

Mahoney also subsampled *Y* and hence lost accuracy.

New method: Fast and accurate

- As fast as only reading the data (*np* time)
- As accurate as using all the data [\(NIPS 2013\)](#page-44-0)

New method: Fast and accurate

As fast as only reading the data (*np* time)

• As accurate as using all the data [\(NIPS 2013\)](#page-44-0)

What about $p \gg n$?

New method: Fast and accurate

- As fast as only reading the data (*np* time)
- As accurate as using all the data [\(NIPS 2013\)](#page-44-0)

What about $p \gg n$?

- Sub-sample the other side of the *X* matrix
- **•** Generates a PCAs regression
- Sub-sample columns almost works
- Fast matrix multiply fixes the "almost" [\(NIPS 2013\)](#page-45-0)
- Aside: yields fast ridge regression also [\(JMLR 2013\)](#page-46-0)

Outline:

- **1** Streaming variable selection.
- ² Fast CCAs.
- **3** Fast HMMs.
- ⁴ Fast parsing.
- **5** Fast clustering.

All are connected to the fast matrix decomposition.

(1) VIF regression

VIF regression

- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression [\(2006\)](#page-47-0)
- provides mFDR protection [\(2008\)](#page-47-0)
- \bullet Instead of orthogonalizing each new X , only approximately orthogonalize it. [\(2011\)](#page-48-0)
	- Can be done via sampling
	- Can be done use fast matrix methods

VIF regression

- Basic method: Stream over the features, trying them in order
- Even more gready than stepwise regression [\(2006\)](#page-47-0)
- provides mFDR protection [\(2008\)](#page-47-0)
- \bullet Instead of orthogonalizing each new X , only approximately orthogonalize it. [\(2011\)](#page-48-0)
	- Can be done via sampling
	- Can be done use fast matrix methods
- For sub-modular problems, this will generate almost as good an estimator as best subsets. [\(2013\)](#page-51-0)

VIF speed comparison

(2) CCA for Semi-supervised data

CCA: Usual data table for data mining

$$
\left[\begin{array}{c} Y \\ (n \times 1) \end{array}\right] \left[\begin{array}{c} X \\ (n \times p) \end{array}\right]
$$

with $p \gg n$

m rows of unlabeled data:

$$
\left[\begin{array}{c} Y \\ n \times 1 \end{array}\right] \left[\begin{array}{c} X \\ (n+m) \times p \end{array}\right]
$$

m rows of unlabeled data, and two sets of equally useful *X*'s:

$$
\begin{bmatrix}\nY \\
n \times 1\n\end{bmatrix}\n\begin{bmatrix}\nX \\
(n+m) \times p \\
\vdots \\
n+m\n\end{bmatrix}\n\begin{bmatrix}\nZ \\
(n+m) \times p \\
\vdots \\
n+m\n\end{bmatrix}
$$

With: $m \gg n$

Examples

- Named entity recognition
	- \bullet Y = person / place
	- \bullet X = name itself
	- \bullet Z = words before target
- Modeling words in a sentence
	- \bullet Y = Current word
	- \bullet X = previous words
	- \bullet $Z =$ future words
- Sitcom speaker identification:
	- \bullet Y = which character is speaking
	- \bullet X = video
	- \bullet Z = sound
- We will call these the multi-view setup

We can compute a CCA between *X* and *Z* to find a good subspace to use to predict *Y*.

- \bullet CCA = canonical correlation analysis
- Finds directions that are most highly correlated

We can compute a CCA between *X* and *Z* to find a good subspace to use to predict *Y*.

- \bullet CCA = canonical correlation analysis
- Finds directions that are most highly correlated
- Can be solved by doing successive regressions
- So, we can use our fast regression algorithms [\(2014\)](#page-50-0)

We can compute a CCA between *X* and *Z* to find a good subspace to use to predict *Y*.

- \bullet CCA = canonical correlation analysis
- Finds directions that are most highly correlated
- Can be solved by doing successive regressions
- So, we can use our fast regression algorithms [\(2014\)](#page-50-0)

Results:

- Theory: Using the top few CCA directions is almost as good as the best linear model. [\(2006\)](#page-53-0)
- We can use this to generate Eigenwords [\(ICML 2012\)](#page-49-0)

Colors:

- nouns = Blue (dark = $NN1$, light = $NN2$)
- verbs = red (dark = $VV1$, light = $VV2$)
- \bullet adj = green
- \bullet unk = yellow
- \bullet black = all else
- Size = 1/Zipf order, top 50 are solid, rest are open.

(3) HMMs

Hidden Markov Model

HMM with states h_1 , h_2 , and h_3 which generate observations *x*1, *x*2, and *x*3.

Hidden Markov Model

The *Y*'s are our eigenwords.

Hidden Markov Model

The *Y*'s are our eigenwords.

$$
Pr(x_t, ..., x_1) = 1^T T \text{diag}(OU^{\top} y_t) \cdots T \text{diag}(OU^{\top} y_1) \pi
$$

Results

- Sample complexity [\(2010\)](#page-52-0)
- **•** Empirical results in NLP
	- Named Entity Recognition (CoNLL '03 shared task)
	- Chunking (CoNLL '00 shared task)
	- Eigenwords added signal to state of the art systems for both tasks
	- [\(2011\)](#page-56-0)
- Neural data [\(2013\)](#page-59-0)

(4) Parsing

- We can extend the HMM material to dependency parsing
- Same sample complexity [\(2012\)](#page-57-0)
- Raw MST Parser is 91.8% accurate
- Adding eigenwords: 2.6% error reduction
- **e** eigenwords plus Re-ranking: 7.3% error reduction
- Extended to constituent parsing [\(2014\)](#page-58-0)

(5) Clustering

If you rotate this, you will see there are "pointy" directions

Theorem (with Hsu, Kakade, Liu, Anima, NIPS 2012)

 $Maximizing $E(\mu^\top X)^4$ will find the natural coordinate system for$ *LDA.*

PC₂

COAUTHORS

- These new fast matrix methods are easy to program.
- Generate statistically useful results.
- Room for interesting new probability theory.

- These new fast matrix methods are easy to program.
- Generate statistically useful results.
- Room for interesting new probability theory.

Thanks!

Theorem (with Yichao Lu, Parmaveer Dhillion, Lyle Ungar)

If $n > p³$, then the algorithm defined by:

- *Let m* = √ *n*
- *Pull out a sub-sample of size m from X 's and call it Z.*
- $Let $\hat{\beta} \equiv (Z^{\top}Z)^{-1}X^{\top}Y$$

then the CPU time is O(*np*) *and accuracy is as good as the usually estimator.*

Theorem (with Yichao Lu, Parmaveer Dhillion, Lyle Ungar)

If p > *n, then using a SRHT on the columns followed by regression will take O*(*np* log(*p*)) *time and lose a constant factor on the statistical accuracy.*

Theorem (with Sham Kakade, Parmaveer Dhillion, Lyle Ungar)

A ridge regression can be quickly approximated by regressing on the top principal components. In particular, for a ridge parameter λ *using components with singular values larger than* λ *will be within a factor of 4 of the ridge estimator on statistical accuracy. (*JMLR *2013)*

Streaming feature selection was introduced in *JMLR* 2006 (with Zhou, Stine and Ungar).

Let *W*(*j*) be the "alpha wealth" at time *j*. Then for a series of p-values *p^j* , we can define:

$$
W(j) - W(j-1) = \begin{cases} \omega & \text{if } p_j \leq \alpha_j, \\ -\alpha_j/(1-\alpha_j) & \text{if } p_j > \alpha_j. \end{cases}
$$
 (1)

Theorem

(Foster and Stine, 2008, JRSS-B*) An alpha-investing rule governed by [\(1\)](#page-47-1)* with initial alpha-wealth $W(0) \leq \alpha \eta$ and *pay-out* $\omega < \alpha$ *controls mFDR_n at level* α *.*

(Foster, Dongyu Lin, 2011) VIF regression approximates a streaming feature selection method with speed O(*np*)*.*

Eigenwords to estimate PERMA

See paper for the predictions of the other 4:

- *Positive emotion* (aglow, awesome, bliss, . . .),
- *Engagement* (absorbed, attentive, busy, . . .),
- *Relationships* (admiring, agreeable, . . .),
- *Meaning* (aspire, belong, . . .)

Achievement (accomplish, achieve, attain, . . .).

(P. Dhillon, J. Rodu, D. Foster and L. Ungar., *ICML 2012*)

(This is work in progress.) Yichao Lu has two current papers on this. The first shows how to use fast PCA and gradient decent to do a fast regression. The second shows how to use this successively to do a fast CCA. Kakade, Hsu and Zhang also have a fast CCA method, but it suffers from getting a less accurate answer than statistically optimal.

(Foster, Johnson, Stine, 2013) If the R-squared in a regression is submodular (aka subadditive) then a streaming feature selection algorithm will find an estimator whose out risk is within a factor of e/(*e* − 1) *of the optimal risk.*

HMM theorem

This is the first theorem we did for HMMs. We now have many other versions for parsing and extensions to continuous data.

Theorem (with Rodu, Ungar)

Let X^t be generated by an m ≥ 2 *state HMM. Suppose we are given a U which has the property that range*(*O*) ⊂ *range*(*U*) *and* $|U_{ii}| \leq 1$ *. Using N independent triples, we have*

$$
N \geq \frac{128 m^2 (2t+3)^2}{\epsilon^2 \Lambda^2 \sigma_m^4} \log \left(\frac{2m}{\delta}\right) \cdot \frac{\widetilde{\epsilon^2/(2t+3)^2}}{(\frac{2t+3}{\delta})^4 + \epsilon -1)^2}
$$

implies that

$$
1-\epsilon \leq \left|\frac{\widehat{\Pr}(x_1,\ldots,x_t)}{\Pr(x_1,\ldots,x_t)}\right| \leq 1+\epsilon
$$

holds with probability at least $1 - \delta$.

Let βˆ *be the Ridge regression estimator with weights induced by the CCA. Then under the multi-view assumption*

$$
\mathsf{Risk}(\hat{\beta}) \leq \left(5\alpha + \frac{\sum \lambda_i^2}{n}\right)\sigma^2
$$

Let βˆ *be the Ridge regression estimator with weights induced by the CCA. Then under the multi-view assumption*

$$
\mathsf{Risk}(\hat{\beta}) \leq \left(5\alpha + \frac{\sum \lambda_i^2}{n}\right)\sigma^2
$$

Estimator is least squares plus a penalty of:

$$
\sum_i \frac{1 - \lambda_i}{\lambda_i} \beta_i^2
$$

Where λ_i 's are the correlations

Let βˆ *be the Ridge regression estimator with weights induced by the CCA. Then under the multi-view assumption*

$$
\mathsf{Risk}(\hat{\beta}) \leq \left(5\alpha + \frac{\sum \lambda_i^2}{n}\right)\sigma^2
$$

Multivew property α is the multiview property:

$$
\sigma_x^2 \leq \sigma_{x,z}^2 (1+\alpha)
$$

$$
\sigma_z^2 \leq \sigma_{x,z}^2 (1+\alpha)
$$

• 5α is the bias $\frac{\sum \lambda_i^2}{n}$ is variance

Results on ConLL task

- • Results on 2 NLP sequence labeling problems: NER (CoNLL '03 shared task) and Chunking (CoNLL '00 shared task).
- \bullet Trained on \sim 65 million tokens of unlabeled text in a few hours!

Relative reduction in error over state-of-the-art:

"Multi-View Learning of Word Embeddings via CCA," *NIPS* 2011.

In EMNLP 2012 (Rodu, Ungar, Dhillon, Collins) we extended the HMM results to dependency parsing.

We have a review paper: "Spectral Learning of Latent-Variable PCFGs," with Cohen, Stratos, Collins, and Ungar, submitting to *JMLR*.

Neural data: raw

Figure 1: Correlation of raw observations, binned at 10 second bins

Neural data: reduced dimension

Figure 2: Correlations among reduced dimensional observations $k=10$

Neural data: state estimate

Figure 3: Correlations among the states of the system as time progresses k=10