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Abstract. A layered graph is a connected graph whose vertices are partitioned into sets L0 =
{s}, L1, L2, ..., and whose edges, which have nonnegative integral weights, run between consecutive
layers. Its width is max{|Li|}. In the on-line layered graph traversal problem, a searcher starts at
s in a layered graph of unknown width and tries to reach a target vertex t; however, the vertices in
layer i and the edges between layers i−1 and i are only revealed when the searcher reaches layer i−1.

We give upper and lower bounds on the competitive ratio of layered graph traversal algorithms.
We give a deterministic on-line algorithm which is O(9w)-competitive on width-w graphs and prove
that for no w can a deterministic on-line algorithm have a competitive ratio better than 2w−2 on
width-w graphs. We prove that for all w, w/2 is a lower bound on the competitive ratio of any
randomized on-line layered graph traversal algorithm. For traversing layered graphs consisting of
w disjoint paths tied together at a common source, we give a randomized on-line algorithm with a
competitive ratio of O(logw) and prove that this is optimal up to a constant factor.
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1. Introduction. Finding the shortest path in a graph from a source to a tar-
get is a well-studied problem. Dijkstra’s algorithm [Dij] appeared in 1959. Other
algorithms can be found in [Bel, Flo, FF, AMOT].

Baeza-Yates, Culberson, and Rawlins [BCR] and Papadimitriou and Yannakakis
[PY] consider a large family of shortest path problems that operate with incomplete
information. They describe algorithms that start at a source, search for the target,
and learn about the environment as they progress. The complexity measure associated
with such an algorithm is the ratio of the total distance traversed by the algorithm
to the length of the shortest source–target path. Related work on exploring graphs
with incomplete information is considered in [DP].
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This measure is closely related to the concept of competitive analysis, introduced
by Sleator and Tarjan [ST], which gives a worst case complexity measure for on-line
algorithms. An on-line algorithm is an algorithm which must deal with a sequence
of events, responding to events in real time without knowing what the future holds.
The competitive ratio of an on-line algorithm A is defined as the supremum, over all
sequences of events σ, and all possible (on- or off-line) algorithms ADV, of the ratio
between the cost associated with A to deal with σ and the cost associated with ADV
to deal with σ. We say that A is c-competitive if this supremum is at most c. (In some
of the on-line literature, especially that dealing with paging and the k-server problem,
from the cost of A on σ a constant additive term is subtracted, before dividing by
the cost of ADV on σ. Where ambiguity might arise, we shall say that A is strictly
c-competitive, meaning that the definition without an additive term is used.)

The layered graph traversal problem was introduced in [PY] and generalizes work
of [BCR]. A layered graph is a connected graph in which the vertices are partitioned
into sets L0 = {s}, L1, L2, L3, ... and all edges run between Li−1 and Li for some i.
Each edge has a nonnegative integral weight. Vertex s is known as the source. Let
w = max{|Li|}; w is called the width of the graph. An on-line layered graph traversal
algorithm starts at the source and, without knowing w, moves along the edges of the
graph, paying a cost equal to the weight of the edge traversed. Its goal is to reach
the vertex t in the last layer known as the “target”; which vertex is the target is not
revealed until the searcher occupies a vertex in the last layer.

Edges can be traversed in either direction, but the on-line algorithm pays when-
ever it crosses the edge. The edges between Li−1 and Li, and their lengths, become
known only when a node in Li−1 is reached.

We define the competitive ratio of a layered graph traversal algorithm to be the
worst case ratio between the total distance traveled by the on-line algorithm and the
length of the shortest source–target path. (If the algorithm is randomized, we use
the expected distance it travels.) The competitive ratio of a layered graph traversal
algorithm is given as a function of the width w.

A layered graph is said to consist of w disjoint paths if it is formed from w paths
which are vertex disjoint except that each contains the common source. [BCR] gave
optimal deterministic algorithms for all w with a competitive ratio which is asymptotic
to 2ew.

For arbitrary layered graphs, [PY] gave an optimal algorithm for width 2, with
a competitive ratio of 9. It follows from [BCR] that 1 + 2w(1 + 1

w−1 )w−1 ∼ 2ew is
a lower bound on the competitive ratio. Prior to this paper no other bounds were
known.

Section 2 proves that general layered graphs of width w weighted with arbitrary
nonnegative integers are no more difficult to traverse than width-w layered trees whose
weights are 0−1. Notice that if we know a lower bound on the smallest nonzero weight
of an edge, then we can express the weights as multiples of this lower bound and round
to the closest integer, thereby converting the problem with arbitrary nonnegative
weights to one with integer weights. The competitive ratio is affected by at most a
constant factor due to this conversion. This factor can be made arbitrarily close to
one by taking the lower bound arbitrarily close to zero.

In sections 3 and 4 we give upper and lower bounds, exponential in w, on the
competitive ratio for deterministic layered graph traversal.

• Section 3 gives an algorithm which attains a competitive ratio of O(9w) on
layered graphs of width w. This algorithm does not need to know w in
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advance and automatically adjusts itself to deal with the real width on hand.
• Section 4 proves that for all w, 2w−2 is a lower bound on the competitive

ratio of any deterministic on-line layered graph traversal algorithm.
Thus arbitrary layered graphs are much harder to traverse than those consisting of
disjoint paths.

Randomized on-line algorithms are addressed in several papers including [BLS,
RS, CDRS, FKLMSY, BBKTW, KRR]. An oblivious adversary is one who constructs
the sequence of events in advance and deals with the sequence optimally. For this
adversary model [BLS] and [FKLMSY] give examples where randomization can im-
prove the competitive ratio exponentially. This adversary models a world in which
the on-line algorithm’s actions do not themselves influence future events. One can
consider a situation where the on-line algorithm’s actions have a direct influence on
the future. In such cases [BBKTW] showed that randomization cannot improve the
competitive ratio more than polynomially. We deal with randomized layered graph
traversal algorithms (assuming an oblivious adversary), and present the following re-
sults.

• Section 5 gives a randomized on-line algorithm for the disjoint path traversal
problem. The competitive ratio is O(logw). We also show that this is optimal
up to a constant factor. This is an exponential improvement over the bound
for deterministic algorithms. This result immediately gives a randomized
min operator [FRR] for on-line k-server algorithms: given a set of w possibly
conflicting on-line strategies, a new on-line strategy can be devised which is
no worse than O(logw) times the best of these strategies on every input.

• Section 6 gives a lower bound of w/2 on the competitive ratio of any random-
ized traversal algorithm for general layered graphs.

The problem of traversing layered graphs generalizes numerous on-line problems.
For instance, metrical task systems (see [BLS]) can be modeled as layered graphs
where layers represent tasks, and in each layer there is a node for each possible state.
The k-server problem (see [MMS]), viewed in the servers’ configuration space, is the
problem of traversing the layered graph of permitted configurations for each request.
Unfortunately, the width of this graph depends on the cardinality of the metric space,
and not just on the number of servers, so layered graph techniques are inadequate for
producing solutions to the k-server problem directly. However, the algorithm given
in [BCR] for traversing layered graphs consisting of disjoint paths was used by [FRR]
in their construction of competitive k-server algorithms.

As an additional example of the power of layered graph traversal as a tool for
designing on-line algorithms, consider the problem of metrical service systems, sug-
gested by [CL]. A single server moving among points of a metric space is presented
with requests. Each request is a set of at most w points. One of these points is then
selected by the on-line algorithm, and the server is moved to that point; the cost is
the distance moved. [CL] gave a competitive metrical service system algorithm for
uniform metric spaces and deterministic and randomized algorithms for all metric
spaces for the case of w = 2. Note that the k-server problem can be reduced to the
metrical service systems problem in the configuration space. Section 7 shows that
the metrical service systems problem with requests of size w (in metric spaces with
integral distances) is equivalent to the width-w layered graph traversal problem, when
w is known in advance, in that a cw-competitive algorithm exists for one problem if
and only if one exists for the other. Related recent work appears in [FL].
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2. Trees are sufficient. We first prove that given a competitive on-line algo-
rithm for traversing width-w layered trees, in which each edge has a 0 − 1 weight
and each nonsource vertex has a neighbor in the previous layer, one can construct an
on-line algorithm, with the same competitive ratio, for traversing arbitrary width-w
layered graphs.

Definition 1. Let H be any layered graph with source s, and let v be a vertex
in H in, say, layer Lj. Define Hv to be a shortest s− v path in H which contains no
vertex of Lj+1 ∪ Lj+2 ∪ Lj+3 ∪ · · · (if such a path exists).

Let G be a layered graph of width at most w with nonnegative integral edge
weights and with source s. We start by proving that an on-line algorithm traversing
G can construct, on the fly, a layered tree T with the following properties.

1. A vertex v is in T ’s ith layer if and only if v is in G’s ith layer and Gv exists.
2. For all v, the length of Tv is at most the length of Gv (if Gv exists).
3. Each nonsource vertex in T has exactly one neighbor in the previous layer.

(We call such a tree rooted.)
Furthermore, any on-line traversal algorithm for T can be simulated on G without
increasing the cost.

The tree T = T (G) is defined by induction on the layer index i, starting from
a one-node graph (i = 0). Let i > 0. For every v in G’s ith layer Li for which
Gv exists, one vertex and one edge are added to T as follows. Let u0 = s and let
Gv = 〈u0, u1, u2, . . . , uℓ, v〉. Let uk be the first vertex in Gv which is in layer Li−1.
Add to T vertex v and edge (uk, v) with weight equal to the weight of the portion of
Gv between uk and v.

Lemma 2. For all v, the length of Tv is at most the length of Gv.
Proof. The proof by induction on the index of the layer containing v.
Basis: i = 0. Trivial.
Inductive Step: i > 0. Assume correctness for i − 1. Suppose that v is adjacent

in T to uk in T ’s i− 1st layer. In path Gv, let a be the length of the prefix from s to
uk and let b be the length of the uk − v suffix. The length of Tv equals the length of
Tuk

plus b. By the inductive hypothesis, the length of path Tuk
is at most the length

of Guk
, which is itself at most a. Therefore, the length of Tv is at most a + b, the

length of Gv.
Given an algorithm A to traverse T , we show how to traverse G without increasing

the cost. Suppose that A moves in T from u in layer i− 1 to v in layer i. The weight
of the edge traversed in T is the length of a portion of Gv in G. This portion avoids
layers i+ 1, i+ 2, ..., so the G-traversal algorithm can follow it. Similarly, if A moves
from v in layer i to u in layer i− 1, the G-traversal algorithm can traverse backward
the corresponding portion of Gv.

A layered tree with arbitrary nonnegative integral weights can be converted to
a layered tree with 0 − 1 weights by inserting additional intermediate layers, on
the fly.

3. A deterministic algorithm. Without loss of generality, we may assume
that the original problem asks for a traversal algorithm for 0−1, rooted, layered trees
of arbitrary width, each having a target. Instead, for each w we will build a traversal
algorithm Aw that maintains the following property. For each 0 − 1 rooted tree T of
width at most w without a target, for each i, the cost incurred by Aw on T between
the start and the time it visits its first layer-i vertex is at most 8 · 9w times the length
of a shortest path between s and any vertex of Li.
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We can easily solve the original problem via algorithms A1, A2, .... We need only
run Aj , starting with j = 1, until the width exceeds j, or until we reach some vertex
in the same layer as the target. If, including the newly revealed layer, the width is
k > j, we backtrack to the source and execute procedure Ak, starting at the source,
forgetting everything we know about the graph. As soon as we learn that the layer
we occupy contains the target, we backtrack to the source and then travel optimally
to t. The total cost incurred by this algorithm on a width-w graph whose shortest
source−target path is of length d is bounded by

d[8 · 91 + 8 · 92 + · · · + 8 · 9w + (8 · 9w + 1)].

This is O(9w) times the source−target distance.
In order to define algorithms Aw, we need some terminology.
1. We refer to the time just after layer t and the edges from layer t− 1 to t have

been revealed as time t. The algorithm must move to a vertex in layer t after time t
and before time t + 1.

2. Vertex v is active at time t if it has a descendant in layer t. At time t, vertices
in layer t are called active leaves.

3. At time t, SP (v) denotes the length of the shortest path from v to a descendant
of v in layer t (if v is active at time t).

Now we construct the algorithms. A1 is the obvious algorithm. Aw for w > 1 is
constructed from A1, A2, A3, ..., Aw−1 as follows. Its execution is divided into phases.
Within each phase, a vertex r, initially the source, is designated as the root for that
entire phase. We will maintain the invariant that every path from the source to an
active leaf passes through the root r. The searcher occupies r at the start of the
phase. Furthermore, an integer d is fixed for the entire duration of the phase.

To start a phase, we let d = SP (r). If d = 0, the searcher moves along length-0
edges from r, visiting all descendents of r at distance 0 from r (using, say DFS), then
returning back to r, all at no cost.

At this point, d = SP (r) ≥ 1 is fixed for the phase, and the searcher occupies r.
If y is a descendant of x, let d(x, y) denote the length of the unique x − y path. At
all times, let S = {s|s is an active descendant of r, d(r, s) = d, s’s parent u satisfies
d(r, u) = d − 1, and SP (s) < d}. (A function of time, S may change many times
within a phase to reflect its definition; however, d is defined once at the beginning of
a phase and remains constant.) Because some active leaf is at distance exactly d from
r at the start of a phase, S 6= ∅ at that time. Because the active leaf descendants of
different s ∈ S are distinct, |S| ≤ w always.

Let St denote the set S at time t. A phase ends as soon as either (1) there is an
x ∈ St such that at time t, x has w active leaf descendants, or (2) St = ∅. If either (1)
or (2) occurs, the current phase ends at time t− 1, and a new phase, possibly with a
new root, begins immediately afterward.

Each phase is divided into subphases. The start of a phase marks the beginning of
its first subphase. A new subphase begins at a later time t if St is strictly smaller than
St−1. (A phase may end in the middle of a subphase.) At the start of a subphase the
searcher occupies the root r. He chooses an arbitrary s ∈ S and at a cost of d moves
from r to s. Where z = |S|, if z = 1, then the searcher executes procedure Aw−1 with
s as the root, and if z ≥ 2, he executes procedure Aw−(z−1) with s as the root.

When the subphase terminates, the searcher retraces all of his steps within that
subphase back to r. This ensures that the searcher occupies r at the beginning of the
next subphase.
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If a phase terminates because of termination condition (1), i.e., there is an x ∈ St

such that the tree rooted at x has w active leaves, then St = {x}. In this case the
searcher moves from r to x, a distance of d, and makes x the root for the next phase. If
a phase terminates because of termination condition (2), i.e., St = ∅, the root remains
the same vertex r. Notice that in this case, SP (r) increased during the phase by at
least d, so the next phase will begin with the new d at least double its value in the
previous phase. This concludes the definition of Aw.

Analysis.

We state four easily proven facts.
Fact 3. If z = |S| at the beginning of a subphase which starts at s, then through-

out that subphase the width of the subtree rooted at s is at most w − (z − 1).
Proof. At any time during the subphase, each vertex in S has at least one active

leaf as a descendant. Since |S − {s}| equals z − 1 during the subphase, s can have at
most w − (z − 1) active leaf descendants at any time, and therefore the width of the
subtree rooted at s cannot exceed w − (z − 1).

Fact 4. Within one phase, algorithm Aw−1 is executed at most twice. For i <
w−1, Ai is executed at most once within a phase. An invocation of Ai (1 ≤ i ≤ w−1)
starting at vertex s terminates with SP (s) ≤ d.

Proof. For a given z, only one recursive call is made while |S| = z. For z ≤ 2, Aw

calls Aw−1. Ai for i < w − 1 can be called by Aw only if z = w − i + 1. As soon as
SP (s) ≥ d, s is evicted from S and the subphase terminates (if not before).

Fact 5. If a phase ends because of phase termination condition (1), i.e., there
is an x ∈ S such that the tree rooted at x has w active leaves, then the new root x
satisfies d(source, x) = d(source, r) + d, and, at the phase end, every source−active
leaf path passes through x.

Proof. Since x ∈ S implies that x is a descendant of r satisfying d(r, x) = d,
clearly d(source, x) = d(source, r)+d. And if the tree rooted at x has w active leaves
when a phase ends, the width bound of w implies that from that time onward every
source–leaf path contains x.

Fact 6. If condition (2) triggers the end of a phase, then the length of a shortest
path from the source to an active leaf is at least d greater at the end of the phase than
at the end of the previous phase.

Proof. When the phase starts, SP (r) = d. If S = ∅ at the phase end, then every
vertex originally in S has been evicted from S. All vertices in S at the beginning of
the phase evicted by reason of inactivity are inactive at the end of the phase.

If y is any active leaf at the phase end, on the r − y path there must be a
vertex x closest to r such that d(r, x) = d. The only possible reason why this active
vertex is not in S at the end of the phase is that SP (x) ≥ d at the end. Therefore,
d(r, y) = d(r, x)+d(x, y) ≥ d+d = 2d and SP (r) ≥ 2d at the end of the phase.

Theorem 7. For each w, for each rooted 0 − 1 tree T of width at most w, the
cost incurred by Aw on T is at most 8 · 9w times the length of a shortest path from
the source to a vertex in the highest-numbered layer.

Proof. We prove the statement by induction on w. For w = 1 the statement is
clear.

Let w > 1. At the start of a phase rooted at, say, r, the searcher occupies r. It
incurs no cost until every path from r to an active leaf has positive cost. Moving from r
to the designated s costs d. Within a subphase, let z denote |S| at the beginning of the
subphase. If z ≥ 2, algorithm Aw−(z−1) is invoked, and by Fact 3 the width of the tree
on which Aw−(z−1) is invoked does not exceed w− (z−1) during the subphase. Aw−1
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is invoked if z = 1, but the width cannot exceed w − 1 during the subphase—for if it
did, the tree rooted at s would have w active leaves and phase termination condition
(1) would hold, thereby aborting the current phase (and subphase). Furthermore,
within a subphase which starts at s, SP (s) cannot exceed d− 1. If it did, s would be
evicted from S.

By the inductive hypothesis, if z > 1 at the start of the subphase, the cost
incurred during this subphase is bounded by d (the cost of moving from r to s), plus
8 · 9w−(z−1)d, plus the cost of backtracking to s and then to r, a total of at most
d + 2(8 · 9w−(z−1)d) + d. If instead z = 1, the cost is at most 2d + 16 · 9w−1d. There
is an additional cost of d at the end of a phase if we move the root forward.

By Fact 4, the total cost in a phase is at most

d +

w
∑

z=2

(2d + 16 · 9w−(z−1)d) + (2d + 16 · 9w−1d)

= (2w + 1)d + 16d[(9 + 92 + 93 + · · · + 9w−2 + 9w−1) + 9w−1]

= (2w + 1)d + 16d

[

9w − 9

8
+ 9w−1

]

< 2wd + 16d

[

17

72
· 9w

]

= d

[

2w +
34

9
· 9w

]

≤ d

[

2

9
· 9w +

34

9
· 9w

]

= 4d · 9w.

Suppose v is of minimum distance from the root among those vertices in the jth
and final layer. For the analysis alone, add w dummy children to v via length-0 edges.
At time i+1, v has w active leaf descendants. Thus either d = 0 in the current phase,
or one vertex x ∈ S has w active leaf descendants. Hence either d = 0, or a phase
ends at time j and x becomes the new root. In either case, we can study the cost
incurred during complete phases.

At all times, define Φ to be the distance from the source to the current root
r. Define Ψ to be the length of a shortest path from the source to an active leaf;
Ψ = Φ + SP (r). In a phase, either Φ increases by d, if (1) terminated the phase, or if
(2) ended the phase, Ψ increases by at least d. Thus Φ + Ψ increases within a phase
by at least d, and neither Φ nor Ψ ever decreases. It follows that the cost incurred by
Aw to visit some vertex in Li is at most 4 · 9w times the final value of Φ + Ψ, which
is at most twice the final value of Ψ. Therefore, Aw is 8 · 9w-competitive.

4. A lower bound for deterministic algorithms. Fix a competitive deter-
ministic layered graph algorithm A for arbitrary layered graphs. A traces out a path
in each layered graph. We construct a layered tree that forces A to perform poorly.
Figure 1 illustrates the lower bound construction. The construction is recursive. The
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Fig. 1. Deterministic lower bound.

idea is that A is forced to move back and forth between the two subtrees attached
to the source s, thus incurring a large cost compared with the shortest path to the
target.

Definition 8. Let H be a layered tree. Suppose that v ∈ Li−1 6= ∅ is the vertex
visited by A at time i.

1. Define T (v) to be the minimum j > i, if any, such that A visits a nondescen-
dant of v at time j.

2. Define L(v) to be the length of a shortest path from v to a descendant of v in
layer T (v) (if T (v) and any descendants in layer T (v) exist).

3. Define C(v) to be the cost incurred by A from the time when v is first visited
until the path traced out by A first exits the subtree rooted at v (if ever). This is
exactly the cost incurred by A at times i+ 1, i+ 2, ..., T (v)− 1, plus the portion of the
cost incurred at time T (v) attributable to edges in the subgraph rooted at v.

Lemma 9. Let w ≥ 1. Let H be a layered tree of height i, say, and arbitrary
width, with at least two vertices in the ith layer, and let s be the leaf in layer i visited
by A. Then there is an infinite rooted tree Ew of width at most w with these properties.

1. The root of Ew has min{2, w} children. The edge(s) out of the root are of

length 2w
2

.
2. If Ew is attached to vertex s and an infinite path of length 0 is attached to

all other vertices in the ith layer of H, then for this new infinite tree, L(s) exists and

C(s) ≥ 2w−1(L(s) − 2w
2

).
Proof. The proof is by induction on w. Let w = 1 and let H be a tree with at least

two leaves. If we attach to s an infinite path of edges of length 212

= 2 and attach
infinite paths of length 0 to other vertices in the last layer, because A is competitive,
T (s) must exist. C(s) ≥ L(s) − 2. So, clearly, C(s) ≥ 21−1(L(s) − 212

).
Let w ≥ 2. Let H be a layered tree and let s ∈ Li be visited by A, where Li+1 = ∅

and |Li| ≥ 2. Attach to s two children a1, b1 via edges of length 2w
2

. Add to all other
vertices in Li an edge of length 0.

If A occupies neither a1 nor b1 at time i + 1, then T (s) = i + 1, L(s) = 2w
2

, and

C(s) = 0, so clearly C(s) ≥ 2w−1(L(s) − 2w
2

).
So we may suppose without loss of generality that A visits a1 at time i + 1. By

induction, there is an infinite tree Ew−1 of width at most w − 1 such that if a1 is
extended by Ew−1 and all other leaves are extended by infinite paths of length 0,

C(a1) ≥ 2w−2(L(a1) − 2(w−1)2).
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At time T (a1), A occupies either a descendant of b1 or a nondescendant of s. Suppose
A occupies a descendant b2 of b1. Choose a descendant of a1 in layer T (a1) of minimum
distance from a1. Call it a2. (Such a descendant exists because Ew−1 is infinite.)
“Kill” all other descendants of a1 in layer T (a1), i.e., mark them as inactive. They will
have no children. Now “truncate” the entire infinite tree to level T (a1) by removing
all vertices in layers T (a1) + 1, T (a1) + 2, T (a1) + 3, ....

By the inductive assertion we can find a new infinite tree E′
w−1 of width at

most w − 1 so that if E′
w−1 is attached to b2 and all other vertices in layer T (a1)

(including a2 but no other descendants of a1) are extended by 0-length infinite paths,

C(b2) ≥ 2w−2(L(b2) − 2(w−1)2). Now truncate the tree to level T (b2) by eliminating
all vertices in layers T (b2)+1, T (b2)+2, T (b2)+3, .... At time T (b2), A occupies either
a descendant a3 of a2 or a nondescendant of s. If A occupies a descendant a3 of a2 we
attach a new infinite tree E′′

w−1 to a3 and “kill” all descendants of b2 in layer T (b2)
except for one descendant b3 of minimum distance from b2.

This process continues until at some point A visits a nondescendant of s. This
must happen eventually, because there is at least one infinite 0-path. Since each stage
adds at least 2w

2

to A’s cost, every competitive algorithm must eventually switch at
some time T (s) to a nondescendant of s.

Suppose that the algorithm has constructed a1, b1, a2, b2, . . . , ak, bk but neither
ak+1 nor bk+1. Thus A visits either ak or bk but exits the subtree rooted at s at time
T (ak) or T (bk), whichever is defined.

Claim. C(s) increases by at least

2w
2

+ 2w−2(L(ai) − 2(w−1)2) ≥ 2w−2L(ai)

between the time when A occupies ai and time T (ai). Similarly, between the time
when A occupies bi and time T (bi), C(s) increases by at least

2w
2

+ 2w−2(L(bi) − 2(w−1)2) ≥ 2w−2L(bi).

Proof of Claim. In moving from ai to a nondescendant of ai, A incurs a cost of
at least 2w

2

on the edges out of s. On the edges in the subtree rooted at ai, A incurs
a cost of

C(ai) ≥ 2w−2(L(ai) − 2(w−1)2)

by the inductive case of the theorem. The proof of the second statement is similar.
But if

α = L(a1) + L(a3) + L(a5) + · · ·

and

β = L(b2) + L(b4) + L(b6) + · · · ,

then

L(s) = 2w
2

+ min{α, β}.

Thus C(s) ≥ 2w−2(α+ β) ≥ 2w−1 min{α, β} = 2w−1(L(s)− 2w
2

). Now make the tree
infinite, as required, by attaching infinite length-0 paths to each leaf in the final layer.
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Now we prove a lower bound of 2w−2 on the competitive ratio.
Theorem 10. If A is a layered graph traversal algorithm, then its competitive

ratio on width-w graphs is at least 2w−2.
Proof. We may assume w ≥ 2. Let s be a source with two children a1 and

b1 via edges of length 2w
2

. Suppose A moves from s to a1. As in Lemma 9, we
can attach to a1 an infinite tree Ew−1 of width at most w − 1 such that C(a1) ≥

2w−2(L(a1)−2(w−1)2) if b1 is extended by an infinite path of length 0. At time T (a1),
A occupies a descendant b2 of b1. Truncate the tree to height T (a1). Let a2 be a
descendant of a1 in layer T (a1), of minimum distance from a1. All descendants of a1

in layer T (a1), other than a2, will have no children. Now attach to b2 an infinite tree
E′

w−1, as in Lemma 9, and to a2 attach an infinite length-0 path

C(b2) ≥ 2w−2(L(b2) − 2(w−1)2).

At time T (b2), A occupies a descendant a3 of a2. Truncate the tree to height T (b2).
Let b3 be a descendant of b2 in layer T (b2), of minimum distance from b2. All descen-
dants of b2 in layer T (b2), other than b3, will get no children.

Repeat this process ad infinitum. Each pair of additions increases the length of
the shortest root−active-leaf path by at least 2(w−1)2 . Eventually we reach a situation
in which we have constructed a1, b1, a2, b2, ..., ak, bk so that if

α = L(a1) + L(a3) + L(a5) + · · ·

and

β = L(b2) + L(b4) + L(b6) + · · · ,

then min{α, β} ≥ 2w
2

. By the claim embedded in the proof of Lemma 9, by that time
A’s cost is at least

2w−2(α + β) ≥ 2w−1 min{α, β}.

The adversary’s cost is

2w
2

+ min{α, β} ≤ 2 min{α, β}.

Therefore the competitive ratio is at least

2w−1 min{α, β}

2 min{α, β}
= 2w−2.

5. Disjoint paths. Let L be a layered graph which consists of a set of disjoint
paths except that they share the common source. Each edge has a 0 − 1 length.

We define the algorithm in phases. At the beginning, while some path has length
0, the algorithm simply chooses such a path and follows it until, if ever, its length
increases. It then switches to another path of length 0, and follows that one until its
length increases. This continues until all paths have positive length. Then the first
phase begins.

In the kth phase (k = 1, 2, ...), the length of the shortest path from the source
to the current layer lies in the interval Ik = [2k−1, 2k). At the start of phase k the
algorithm chooses a path randomly and uniformly from among those paths of length
in Ik running from the source to the current layer. It then backtracks through the
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source to the current layer on the chosen path, incurring a cost of at most 2 · 2k in
the process.

Whatever path the algorithm is following in phase k, it blindly continues to follow
that path until its length reaches 2k. Whenever the length of the current path reaches
2k, the algorithm replaces it by a path chosen randomly from those paths of length
less than 2k—if any exist—backtracking through the source and incurring a cost of at
most 2 · 2k in the process. A new phase begins and k is incremented as soon as every
path has length at least 2k.

Analysis.

Our initial backtracking cost at the start of a phase is at most 2 · 2k. If Ew is an
upper bound on the expected number of times the algorithm switches paths within any
phase, then the expected cost within phase k is at most 2k+1+Ew2k+1 = 2k+1(1+Ew).
Let ℓ denote the number of phases. Our total expected cost is bounded above by
(1 + Ew)

∑ℓ

k=1 2k+1 < (1 + Ew)2ℓ+2. The adversary’s cost is at least 2ℓ−1, giving us
a competitive ratio bounded by 8 + 8Ew. We show that we can take Ew = Hw =
1 + 1

2 + 1
3 + · · · + 1

w
∼ lnw.

We now describe a probabilistic game which models the path selection process
in a phase. Let S be a set of size n. There are two players A and B. Initially B
randomly and uniformly picks one element, hiding his choice from A. At each step A
chooses one element of S and removes it from S. Whenever A discards the element
selected by B, B pays A $1 and B uniformly at random picks a new item (if S is still
nonempty).

We prove that the expected cost Fn incurred by B is exactly Hn. Clearly, F1 = 1,
and for n ≥ 2, Fn satisfies

Fn =
1

n
(1 + Fn−1) +

1

n
(1 + Fn−2) +

1

n
(1 + Fn−3) + · · · +

1

n
(1 + F1) +

1

n
(1 + 0).

This recurrence and the fact that F1 = 1 imply that Fn = Hn for all n since

Fn = 1 +
1

n
(F1 + F2 + F3 + · · · + Fn−1).

Thus

nFn = n + (F1 + F2 + · · · + Fn−1)

and

(n− 1)Fn−1 = (n− 1) + (F1 + F2 + · · · + Fn−2),

if n ≥ 3, so

nFn − (n− 1)Fn−1 = 1 + Fn−1.

Therefore, for n ≥ 3, n(Fn − Fn−1) = 1 and Fn = Fn−1 + 1/n. Since F2 = 3/2, it
follows that Fn = Hn for all n.

The connection between the experiment and layered graph traversal.

A corresponds to the adversary and B corresponds to the algorithm. Each element
in the set is associated with a path in the layered graph of length less than 2k at the
beginning of the kth phase. A discards an element from the set when the length of the
corresponding path reaches 2k. He pays $1 every time this happens. The expected



458 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

number of times B backtracks is at most the expected cost to B of the game above.
Thus we may take Ew = Hw. We have proven the following theorem.

Theorem 11. The competitive ratio of the randomized algorithm above for
traversing disjoint paths is at most 8 + 8Hw.

A lower bound.

Theorem 12. Let w and M be any positive integers. For any randomized on-line
algorithm A for traversing disjoint paths of width at most w, there is a width-w layered
graph for which the length of the shortest source−target path is M , but on which A’s
expected cost is at least M(2Hw − 1).

Proof. Each path in the width-w layered graph begins with M unit-cost edges.
For a layered graph that begins this way, at time M there is at least one layer-M
vertex which is occupied by the searcher with probability at least 1/w. We give that
vertex no children, but to every other layer-M vertex we give a child via a length-0
edge. At time M + 1, at least one of the w − 1 layer-(M + 1) vertices is occupied
by the searcher with probability at least 1/(w − 1). We add a length-0 edge to layer
M + 2 from every layer-(M + 1) vertex but that one. That one dies. We repeat this
process for layers M +2,M +3, ...,M +(w−1); in layer M + i there are exactly w− i
vertices, i = 0, 1, 2, ..., w− 1. The unique vertex in layer M +w− 1 is the target. The
expected cost incurred by A is bounded below by M plus 2M times the sum, over
each leaf in the graph other than the target, of the probability that A visits that leaf.
This sum of probabilities is 1

w
+ 1

w−1 + 1
w−2 + · · · + 1

2 = Hw − 1. The total expected
cost is hence at least M(1 + 2(Hw − 1)) = (2Hw − 1)M.

6. A randomized lower bound. Now we return to general layered graphs. Fix
an integer m ≥ 2. Let rw = w(1 − 1/m) for all w.

By induction on w, we construct for each w a probability distribution G(w) on
a finite family of layered graphs of width w. Every graph drawn from G(w) has a
designated vertex as the root and another as the target; the target is the unique
vertex in the final layer. From the inductive construction it will be easy to verify that
the following quantities depend only on w and m:

• the length Lw of the shortest root−target path in the graph,
• the sum Sw of the edge lengths,
• the number Fw of layers, excluding L0 (the layer containing the source).

Let Ew = 2SwFw. It is clear that this is an upper bound on the distance traversed
by any algorithm when it traverses any layered graph drawn from G(w).

Now we construct the probability distributions. See Figure 2.
Basis: w = 1. With probability 1 we draw a single edge (s, t) of length 1 with s

the root and t the target.
Inductive Step: w > 1. We start with a vertex designated as the root, say s. To

s we attach two edges (s, u1), (s, l1) of length (1/2)Ew−1 each. We now construct the
graph in stages. For stage 1 we draw a copy H1 from G(w − 1) and attach it to u1

(i.e., make u1 the root of this copy). The target of H1 we call u2. H1 has Fw−1 layers
of nonsource vertices in it. For these Fw−1 layers we extend l1 by a path of Fw−1

length-0 edges ending at l2. For stage 2, we extend l2 by independently drawing a
graph H2 from G(w − 1), and we extend u2 by a path of Fw−1 length-0 edges. We
continue this pattern for N = Nw = mrw−1Ew−1 stages (N is an even integer). In
the ith stage, for i odd, we independently select a graph Hi as in stage 1, and for
i even, we choose Hi independently as in stage 2. In the last layer we have vertices
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Fig. 2. Randomized lower bound.

uN+1 and lN+1. We toss a coin and equiprobably choose one. It gets a child, the
target, via a length-0 edge; the other gets none. This completes the construction.

Lemma 13. For all positive integers w, for all deterministic algorithms Aw de-
signed to traverse graphs drawn from G(w), the expected cost of Aw to traverse a graph
drawn randomly from G(w) is at least rwLw.

Proof. The proof is by induction on w. The w = 1 case is trivial.
Let w ≥ 2. Choose a deterministic algorithm Aw for graphs drawn from G(w).
Within this proof, we imagine that the random graph H is generated “on the

fly”; i.e., only when the searcher reaches either ui or li, for i odd, are the two graphs
for stages i and i+ 1 drawn from G(w− 1), and only then are stages i and i+ 1 of H
built. This makes no difference, since Aw is on-line and its behavior cannot depend
on the future.

Pick an odd i < N . At the end of stage i− 1, the searcher occupies either ui or
li. Let J be a graph having i − 1 stages that induces the searcher to occupy ui at
the end of stage i− 1 (if possible). Now define an algorithm Aw−1 (dependent on J)
for traversing graphs drawn from G(w− 1), as follows. Aw−1 mimics Aw in the graph
drawn from G(w − 1) in the Fw−1 layers succeeding ui, until, if ever, Aw backtracks
through s to a nondescendant of ui. At this point, Aw−1 blindly marches ahead in a
naive way, until ui+1 is reached.

The cost of backtracking through s is so large that the cost incurred by Aw in the
2Fw−1 layers succeeding ui, given that the first i − 1 stages equal J , is at least the
cost of Aw−1 on those same layers. The inductive hypothesis now implies that the
expected cost of Aw in the 2Fw−1 layers succeeding ui, given J , is at least rw−1Lw−1.

Now choose an i− 1-stage graph J ′, if possible, so that Aw occupies li at the end
of stage i−1. A similar argument implies that the conditional expected cost incurred
by Aw in the 2Fw−1 layers succeeding li, given that the first i− 1 stages of H equal
J ′, is at least rw−1Lw−1. It follows that the (unconditional) expected cost incurred
by Aw in progressing from either ui or li to either ui+2 or li+2 is at least rw−1Lw−1.

At the end of stage N , we flip a coin to decide which vertex, uN+1 or lN+1,
becomes the parent of the target. With probability 1/2, the searcher must back-
track through s to the target. Thus it incurs an additional expected cost of at least
(1/2)(NLw−1 + Ew−1). The total expected cost divided by Lw is at least
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(N/2)rw−1Lw−1 + (1/2)(NLw−1 + Ew−1)

(1/2)Ew−1 + (N/2)Lw−1

=
(N/2)rw−1Lw−1 + (1/2)rw−1Ew−1 + (1/2)(NLw−1 + Ew−1) − (1/2)rw−1Ew−1

(1/2)Ew−1 + (N/2)Lw−1

= (rw−1 + 1) −
(1/2)rw−1Ew−1

(1/2)Ew−1 + (N/2)Lw−1

≥ (rw−1 + 1) −
(1/2)rw−1Ew−1

(N/2)Lw−1

≥ rw−1 + 1 −
rw−1Ew−1

N
= rw−1 + (1 − 1/m).

Now we prove the following theorem.
Theorem 14. For every positive integer w, for every randomized algorithm B for

traversing graphs drawn from G(w), there exists a layered graph K of width at most w
such that the ratio of the expected distance traversed by B to the length of the shortest
root−target path in K is at least rw.

Proof. The proof follows Yao’s observation regarding the minimax principle [Yao].
Choose a randomized algorithm B and a width w. Lemma 13 implies that the ex-
pected cost incurred by every deterministic algorithm A on a graph drawn randomly
from G(w) is at least rwLw. However, B is nothing more than a probability distribu-
tion on deterministic algorithms. It follows that the expected cost of B on a graph
drawn randomly from G(w) is at least rwLw. It follows that on some graph K as-
signed positive probability under G(w), B’s expected cost is at least rwLw. But the
source−target distance in K is Lw.

7. Metrical service systems. In the following section, w-MSS abbreviates
“metrical service systems with requests of size at most w,” w-LGT abbreviates “traver-
sal of layered graphs of width at most w,” and w-LTT abbreviates “traversal of 0− 1
rooted layered trees of width at most w.” (Notice that w-LGT and w-LTT algorithms
traverse only graphs of width at most w.)

Lemma 15. If A is a cw-competitive algorithm for w-LGT, then there exist
strictly cw-competitive on-line algorithms for w-MSS in all metric spaces with integral
distances.

Proof. Fix a metric space where the distances are integral. Given a sequence
of w-MSS requests, we construct, in an on-line manner, a layered graph. Layer 0
contains a single vertex, which is the starting point of the server. The vertices of
layer i > 0 are the points of the ith request. For every i ≥ 0, every vertex of layer i
is connected to every vertex of layer i + 1 by an edge of weight equal to the distance
between the two points. Apply the w-LGT algorithm A to this graph. When A first
encounters layer i, it chooses a vertex in that layer to move to. The w-MSS algorithm
serves the ith request by moving to that point.

Definition 16. Let I be an infinite rooted layered tree in which each vertex has
2w children. Let r denote the root of I. Let M be an infinite metric space whose
underlying set is V (I) and in which the distance between u and v is the length of the
u− v path in I.

Lemma 17. Let B be a strictly cw-competitive w-MSS algorithm for the infinite
metric space M. Then there exists a cw-competitive on-line w-LTT algorithm A (and
therefore one for w-LGT).
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Proof. Let T be an instance of the w-LTT problem. Let s be the source vertex of
T , initially occupied by the searcher. We use B to define algorithm A which traverses
T as follows. From the, say, li ≤ w vertices vi1, v

i
2, ..., v

i
li

in the ith layer of T , we

construct, on-the-fly, a sequence pi1, p
i
2, ..., p

i
li

of li vertices of the metric space M (pij
“representing” vij), and then present the set {pi1, p

i
2, ..., p

i
li
} as a request of li ≤ w

points to B. B will choose one of the points, say, pij , to move to. We stipulate, then,

that A moves to vij .

Let us start by defining v0
1 := s, the source vertex of T . Representing v0

1 is p0
1 := r,

the root of I. A starts on the node p = p0
1.

At a generic time, A will occupy some node in, say, layer i of the layered graph.
When layer i + 1 is revealed, we must choose request i + 1 in M, the response to
which tells to which node of layer i + 1 A should move. This is done as follows. Let
the li+1 ≤ w nodes of the i + 1st layer of T be vi+1

1 , vi+1
2 , ..., vi+1

li+1
. Look at the edge

between a node vi+1
j in the i + 1st layer and its parent called, say, vik. If the edge

between vi+1
j and its parent vik is of weight 0, then we represent vi+1

j by the same

node pik that represented its parent: pi+1
j := pik. If, on the other hand, the edge from

vi+1
j to its parent vik is of weight 1, then we choose a child of pik to represent vi+1

j :

we choose, among the 2w children of pik, a child which is the root of a subtree in I
containing no representative of a vertex in the ith (previous) layer and also containing
no representative (so far) of a vertex in layer i+1. (Since there are at most 2w nodes
in layers i and i + 1, the 2w children of pik suffice.) This child is then pi+1

j .
It remains to show that for any two consecutive layers, the distance in T between

any pair of vertices contained in those two layers is equal to the distance in I between
their representatives. Consider any two consecutive layers numbered i and i+1. The
proof is by induction on i. The case of i = 0 is easy and the proof is omitted. Now
consider i > 0. Notice that by the inductive hypothesis the claim is true if both
vertices in the pair are taken from the ith layer. As we generate the representatives
for the vertices in the i+1st layer, we check the distances between the representatives
and the representatives of vertices in the ith layer, and the distances between their
representatives and the representatives already created for vertices in layer i + 1.
Consider a particular vertex vi+1

j of the i + 1st layer. If the distance to its parent vik
in T is 0, then, as described above, we have pi+1

j = pik, which is the representative of

its parent. Since pik has already been considered in the current step of the induction,
the claim trivially holds. If the distance between vi+1

j and vik is 1, the choice of pi+1
j

guarantees that its distance to any representative q of a vertex in layer i + 1 which
was already considered in the current step of the induction, or of a vertex in layer i,
is exactly the distance between pik and q, plus 1. Thus, the claim holds in this case
as well.

Therefore we conclude that at each step, the distance traversed by the w-MSS
server is equal to the distance traversed by the w-LTT searcher. We also conclude
that the optimal costs for both instances are the same (since an optimal path for one
induces a path for the other with the same cost). This completes the proof of the
lemma.

Lemmas 15 and 17 give the following result.
Theorem 18. For each w, strictly cw-competitive, deterministic or randomized

algorithms exist for w-MSS for all metric spaces with integral distances if and only
if a cw-competitive, deterministic or randomized algorithm, respectively, exists for
w-LGT.



462 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

8. Concluding remarks. An obvious open problem is to close the gap be-
tween the upper bound and the lower bound for deterministic and randomized layered
graph traversal. Of special interest is the question of designing an efficient random-
ized traversal algorithm. In an earlier version of this paper, we conjectured that
a polynomial upper bound is achievable by the use of randomization. Since then,
this conjecture has been proven by Ramesh [Ram], who gives an O(w13)-competitive
randomized algorithm. Ramesh has also reported improvements in the determinis-
tic upper bounds (to O(w32w)) and in the randomized lower bounds (to a nearly
quadratic bound). Burley [Bur] recently further improved the deterministic upper
bound to O(w2w) via an algorithm for metrical service systems.
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