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Information Consistency of Nonparametric Gaussian
Process Methods

Matthias W. Seeger, Sham M. Kakade, and Dean P. Foster

Abstract—Bayesian nonparametric models are widely and successfully
used for statistical prediction. While posterior consistency properties are
well studied in quite general settings, results have been proved using ab-
stract concepts such as metric entropy, and they come with subtle condi-
tions which are hard to validate and not intuitive when applied to concrete
models. Furthermore, convergence rates are difficult to obtain.

By focussing on the concept of information consistency for Bayesian
Gaussian process (GP)models, consistency results and convergence rates
are obtained via a regret bound on cumulative log loss. These results
depend strongly on the covariance function of the prior process, thereby
giving a novel interpretation to penalization with reproducing kernel
Hilbert space norms and to commonly used covariance function classes
and their parameters. The proof of the main result employs elementary
convexity arguments only. A theorem of Widom is used in order to obtain
precise convergence rates for several covariance functions widely used in
practice.

Index Terms—Bayesian prediction, eigenvalue asymptotics, Gaussian
process, information consistency, nonparametric statistics, online learning,
posterior consistency, regret bound.

I. INTRODUCTION

In this correspondence, we are interested in methods predicting a
response y € ) from a covariate £ € X'. Given some class of func-
tions 7 = {f : X — R} and a likelihood conditional distribution
P(y|f(x)) over Y, we assume that data y, ..., yn, given &1, ..., &,,
is generated by nature picking f, then sampling y; ~ P(:|f(#;)) in-
dependently.! Note that covariates are by definition always given at
prediction time, and in the sequel all distributions are implicitly condi-
tional on all necessary covariate instances. We assume that the covari-
ates are independently drawn from a distribution d (), which will not
be modeled.

The prediction task may be of batch nature, i.e., given some training
data {(2;,y:)|¢ = 1,...,n}, predict y,41 for unseen @&,1, or of se-
quential nature, i.e., predict y;, given ®1,...,x; and yi,...,yi—1, re-
spectively, for ¢ = 1,...,n. The Bayesian prediction strategy is the
same in both situations. Initial assumptions about nature’s choice are
encoded in a prior distribution Py (f) over . This distribution is con-
ditioned on observed data in order to obtain the posterior distribution

[TT=, Pyilf(2:)] dPss(f)
(ITZ, Pyl f'(x:))] dPos(f")

des(f|ll1~~~~7yn) =
' J
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In some settings, it is advisable to parameterize nature’s choice by more
than one real-valued function. While our results can be extended to this case
straightforwardly, we focus on single-function models for simplicity.
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from which the predictive distribution is obtained as
Pratprilyzn) = [ Plisr f@oe)dPi ()

thus, as expectation of the likelihood with respect to (w.r.t.) the poste-
rior. Note that this strategy has strong practical and theoretical merits,
even if nature does not choose f according to P,,. Barron’s work [3]
can be understood as trying to characterize Bayesian prediction per-
formance depending on the prior specification, assuming that the true
likelihood is known, but making minimal or no assumptions about na-
ture’s true choice of f.

An intuitive way to information consistency goes via sequential pre-
diction. Let y.; = {y1,...,¥:}, and £<, accordingly. An expert pre-

diction strategy parameterized by f € F is
Py, |f) =[] Plyil @)
=1

An expert predicts P(y;|f(2;)) independently for each unseen point,
using a fixed function. The Bayesian prediction strategy is mixing over
experts, in the sequential case by using the predictive distributions
Py (yily.,), so the mixing distribution is always given by the pos-
terior for all observed data. Now, suppose that a prediction strategy,
outputting Q(+) in order to predict y;, incurs the log loss — log Q(y:)
for each single prediction, and the cumulative log loss overall

n

Lo(ye,) =) —logQyily,).

i=1
For an expert f, the cumulative log loss is
Li(y<,)=—log P(y,|f)
while for the Bayesian strategy we have that

LbS(?Ign) = —log Pbs(ygn)

by the chain rule. The Bayesian strategy has been analyzed under the
log loss setting by several researchers [7], [8].

Let () be a prediction strategy, and let Feomp C F be a competitor
space. Barron [3] calls @) information consistent over Feomp iff

Eﬂvgn [D [P(y§n|fw z<n) || Q(y§n|2§”)]]

n

=0 (n— o) (1)

for all f € Fecomp. Here, the expectation is over <, ~ p", and
D[P || P.] = [(logP1 — log P>)dP; is the relative entropy (or
Kullback—Leibler divergence). Note that

lflE[D[P(y§n|f) | Q(ygn)]]
=n"" Y E[D[P(yil f(@) | Quily)]]

=1

which is a type of Cesaro average risk. Information consistency
seems a fairly weak mode of consistency, but Barron [3] argues that
some stronger notions do have shortcomings which are unintuitive
at the least. For example, while the average of the left-hand side
of (1) over f ~ P, is nonincreasing, the individual Kullback risk
D[P(y:|f(2:)) || Pos(y:|y ;)] can increase for some 7, even if Py, (f)
is large. And in order to ensure that for any f, the posterior P(f|y.,,)
concentrates on arbitrary small neighborhoods of f (w.r.t. Hellinger,
Kullback, or some other metric) [4], unintuitive global conditions on
P, are required (Barron [3] gives an example of posterior inconsis-
tency, where Pos(Fpaa) = 1/2, but Pos(Foad|y<,,) — 1 almost
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surely, and d(f, f') = 1 for all f' € Fp.q, data coming from f). We
focus on information consistency in what follows.

In order to relate information consistency to sequential prediction
under cumulative log loss, note that

where the expectation is over y., ~ P(:|f). If we can bound
Lis(y<,)— Ls(y<, ) uniformly overall y,,, and for all f € Freomp,
this implies information consistency and convergence rate bounds.

Our main result can be stated as follows. Consider a Bayesian
Gaussian process (GP) prediction strategy s, where the prior distri-
bution P, (f) is a zero-mean GP with covariance function K (&, '),
and let H be the reproducing kernel Hilbert space determined by K,
having norm || f|| . Furthermore, let the curvature of — log P(y|f(2))
w.r.t. f(z) be bounded by ¢ > 0 for any y € ). We show that

1 5 1
D [P(y§n|f) || Pbs(ygn)] < §||f||7( + 5 log |I+ CK|

forany f € H, where K = (K (z:,2;));; € R™" is the covariance
matrix depending on K and 2<,, . Therefore, Bayesian GP prediction is
information consistent w.r.t. / if n "' E[log [I+cK|] — 0 (n — o0),
where the latter criterion depends on the covariance function K™ and the
covariate distribution p only. We give a range of examples for practi-
cally relevant covariance functions and restrictions on ¢, for which in-
formation consistency and convergence rates can be established along
this path, namely, by analyzing the term E[log |I + cK|] asymptoti-
cally as n — oo. To this end, we utilize the Mercer eigenexpansion
of the covariance function X' w.r.t. the measure dy, and a powerful
theorem by Widom [6] in order to obtain asymptotic expressions for
the eigenvalues. To the best of our knowledge, our approach to obtain
sharp information convergence rates for GP nonparametric prediction
methods is novel. The regret term n~'E[log |[I + ¢K]|] and also our
bounds for common kernel classes depend explicitly on parameters of
K and p, thereby giving new characterizations of these regularization
parameters in terms of convergence rates.

In Section II, we state our main result, a regret bound for cumulative
log loss of Bayesian GP prediction. In Section III, we develop tools in
order to bound the expected regret featuring in our result. These tools
are applied to several classes of covariance functions frequently used
in practice in Section IV. Conclusions are given in Section V, and the
Appendices contain details of proofs.

II. MAIN RESULT

A Gaussian process (GP) model is defined on the space F of con-
tinuous functions X — R. A zero mean GP is a random function
f € F with E[f(z)] = 0 and E[f(2)f(2")] = K(z,2') for all
z,2' € X.GPs have the property that all associated finite-dimensional
distributions are Gaussian again. Namely, let 2y, . ..,z be arbitrary,
and consider the random vector f = (f(2;)); € R*. Then, f has
a multivariate Gaussian distribution with mean O and covariance ma-
trix (K (2, 2;)):; € R®*. For details on GPs in Machine Learning,
see [9], [10]. GP models form a major class of nonparametric methods
which are routinely used for spatial statistics applications in geostatis-
tics and remote sensing [11]. Bayesian GP prediction has been pio-
neered by O’Hagan [12], and has been applied to many problems in
Machine Learning. We note that while Bayesian GP prediction is ana-
lytically tractable only for a Gaussian likelihood, Markov chain Monte
Carlo techniques may be used to sample from the posterior, or one
of several variational approximation techniques proposed in Machine
Learning may be applied.

The covariance function K™ of a GP is a positive semi-definite form,
in that all induced covariance matrices K are always positive semi-
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definite: v Kv > 0 for all vectors ». A reproducing kernel Hilbert
space (RKHS) [13], [14] of functions X — R is associated with K as
follows. Consider the linear space of all finite kernel expansions (over
any &1,...,&,) of the form f(-) = 3" | a; K(-, &;), with the inner
product

<Z OL’Z'IXP(', .’Ei), Z ﬁjlf('v 1‘;))
i J K

34

= Z (Igﬁjlf(.’l?i, .’l?l])
i

The RKHS 7 is the completion of this space. By construction,  con-
tains all finite kernel expansions f(-)= >""_, a; K (-, z;) with

1flk =o' Ka,  Kij=K,z;). @
The characteristic property of H is that all (Dirac) evaluation func-
tionals are represented in H itself by the functions K (-, 2, ), meaning
that (f, K(-,z;))x = f(#;). This reproducing property means that
convergence in norm in H implies pointwise convergence, so all f € H
are pointwise defined. Intuitively, 7 is a space within Lz (Y') of rea-
sonably well-behaved functions. In general, it is the case that functions
of larger RKHS norm show a rougher and more irregular behavior, and
I£I|% is commonly used as smoothness penalty. The RKHS A turns
out to be the largest competitor space of experts for which our results
are meaningful. We note that for most kernels used in practice, and in
fact for all infinite-dimensional kernels mentioned here, H is dense in
the space of continuous functions restricted to a compact domain in X'.
Also note that the “complexity” || ||« assigned to a function f depends
on characteristics of ', and our results render a new interpretation for
this dependency.

Theorem 1 (Main Result): Let P, be the Bayesian GP prediction
method, configured by a zero-mean Gaussian process prior with co-
variance function K. Let (#<n, ¥, ) be a sequence from (X x )"
and £ be a function from the RKHS H associated with K. Then

1 . 1 .
where || f||x is the RKHS norm of f, K = (K(z;,z;)):;; € R™"

is the covariance matrix over the input sequence <, and ¢ > 0O is a
constant such that for all y € Y, f(z) € R:

d?
—— —log P(y|f <e.
FaE 8 (ylf(x)) <e
For the Gaussian likelihood P(y|f(2)) = N(y|f(z),o?), (3) is at-
tained as equality with ¢ = o2 for a function of the form f(-) =
Z:L:l o K (-, @;).

This theorem has appeared in [15], using earlier work on parametric
models [16]. A proof is given in Appendix I. The bound depends on
| £11% , which states the intuitive fact that a meaningful bound can only
be obtained under smoothness assumptions on the set of experts (note
that the bound is nonasymptotic and holds for any finite »). The con-
stant ¢, which bounds the curvature of the log likelihood, exists for most
commonly used exponential family likelihoods. For logistic regression,
we have ¢ = 1/4, and for Gaussian regression, we have ¢ = o2,
where ¢ is the noise variance.

Returning to our introduction to information consistency in Sec-
tion I, we see that we have to analyze the term E[log |[I + ¢K|], which
depends on K and the covariate distribution z. We call R = log |I +
cK| the regret term. In Section II1, we will provide a thorough analysis
of the (expected) regret term, obtaining tight information consistency
results for several practically relevant settings.

Note that Theorem 1 is a statement which holds for every fixed
f € 'H, and the right-hand side depends on f through || f||% . This is
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different from learning curve analyses, where f is assumed random ac-
cording to a fixed prior, typically just the one that the Bayesian method
is using. For example, if the likelihood is N (y:|f(z;),0?) and f is a
zero mean GP with kernel I, a simple direct calculation shows that
By [DIP(w, 9) Il Puc,)l] = S log I + 0 K]

so that R controls the learning curve directly [17]. Our analysis is more
general, in that we do not assume that f is drawn from a simple, known
prior distribution. On the other hand, our result restricts f to lie in H,
which in fact is a null set under the GP prior [14]. If || - || is formally
defined over all functions in Ly (X') (with || f||lx = oc for f € H),
then E¢[|| f||x] = oo for GP sample paths.

III. ANALYSIS OF THE REGRET TERM

Theorem 1 provides aregret bound for Bayesian GP prediction, com-
peting against experts from the RKHS associated with the covariance
function K of the GP. The bound depends on the squared RKHS norm
I £11% , where £ is the competitor function, and on the regret term R =
log |I + cK|, the latter depending on K and the covariates #<,,. In
this section, we collect some tools from spectral analysis which will
be used to obtain bounds on E[R] under assumptions on A  and the
covariate distribution y, thereby obtaining information consistency re-
sults via Theorem 1.

It is clear that with no further assumption, the regret term can always
be made as large as 2(n), rendering our result trivial. For example,
for an isotropic covariance function K (z,2') = K(||z — ||) and
K(r) — 0 (r — o0), we can choose all 2; to be very far from each
other, equivalently y to have very heavy tails, so that K o I for all n.
In such extreme cases, the smoothness constraint on f through the re-
quirement of a small || f||% term does not imply any strong constraints
on the function values f(z; ), so that even a set of smooth competitors
can represent any ¥ ,, very well. Our main result implies that R has to
be large in such cases. In the remainder of this correspondence, we are
interested in more reasonable cases, in which useful instances of our
main result can be obtained.

Suppose K is continuous and Hilbert-Schmidt in L (). Note that
we choose the covariate distribution j as base measure in what follows.
The spectrum of the linear operator with kernel I is discrete and non-
negative [14]

K(@,2') =) oo (@)ps(2). )

s>0

Here, {()\,,¢s)|s > 0} is a complete orthonormal eigensystem of K
in Lo(p) with Ao > Ay > --- > 0, and E[¢, ()¢ (2)] = b,,. The
Hilbert-Schmidt assumption implies that ) A2 < o0, 50 \s decays
rapidly to 0, and the series expansion of K converges uniformly.

Lemma 1: Suppose I{ has an eigenexpansion (4). Then

R=log|I+cK|< Zlog <1 + cAs ZéS(fl‘z)z> .

s>0 =1

Moreover, suppose that <, are drawn from a distribution such that the
marginal distribution of each component x; is yt. Then, the expected
regret is bounded as follows:

E[R] < log (14 cA.n).
$>0
Proof: Let A = diag(\s)s, ® = (ds(®i))i,s, so that K =
lims_. o ‘I’-.gSAgsq’TgS uniformly over <., where “< S is short
for {1,...,S5} (and S > n). By continuity of log | - |, we have that

log [T+ cK| = lim log |T + cAcs® _5® 5. )

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

The
first statement follows by Hadamard’s inequality (which states that
log |M| < log |diagM| for positive semi-definite M).

Consider the eigenexpansion (4) of K with respect to . We have
E[n~ IQTS s®. <s] = I by the orthonormality of the eigenfunctions.
Using (5) and the concavity of A +— log |[I 4+ A|, we have

< Slim log [I + enA<sE [nqﬁfssé.és”

= Zlog (1+ cAsn) (6)

s2>0

The last term is equal to log I+ 0A1</§<I>T§S<I>.’§SA1</§ .

Ellog|l +cK[ = Jim E [log ‘I +oAs® B s

by Jensen’s inequality. In the first equality, we use Lebesgue’s mono-
tone convergence theorem, noting that |I + CASSQ?:SSQ',Sf;' >1is
nondecreasing in S. This completes the proof.

This result allows us to bound E[R], given that we know the asymp-
totic behavior of Ay as s — oo. However, the eigenvalues of the
Mercer expansion of I w.r.t. ;1 are known explicitly only for a few
special cases. Widom [6] gives a powerful theorem which character-
izes Ay (s — ©0) in a useful way, under some conditions on K and g.
In the sequel, A ~ B means that A/B — 1 in the limit which is given
by the context.

A kernel K is called stationary if K(x,2') = K(z — 2'), and
isotropic if K(z,2') = K(||z — 2'||). For example, the Gaussian
kernel (7) is isotropic. Bochner’s theorem [11] asserts that the class of
stationary covariance functions with K (0) = 1 (also called stationary
correlation functions) is identical to the class of characteristic functions
of probability distributions: K (r) = E[exp(iw”r)], where w € R is
arandom variable. If the distribution of w has a density, this is called the
spectral density? \(w) of K (). For isotropic covariance functions, we
have K'(r) = K(r),r = ||r||, and therefore A(w) = A(n), n = ||lw]|.

Widom’s theorem applies to isotropic covariance functions with a
spectral density A(#) which does not decay too fast as  — co. More-
over, dj needs to have a density p(2) w.r.t. de which is bounded and
has bounded support.3 The theorem and its requirements are detailed in
Appendix III. It is interesting to note that the Gaussian kernel (7) does
not fulfil Widom’s requirements, since the tails of its spectral density
decay exponentially fast. We have the following theorem.

Theorem 2: Let K () be an isotropic covariance function in R? with
strictly decreasing spectral density A(n), fulfilling the requirements for
Widom’s theorem (Appendix III). Suppose that the covariate distribu-
tion 1 has bounded support and a bounded density, in that u(z) < D,
and p(2) = O for ||2|| > T. Then

2(d/2+ 17 1),

A < D(2m)A < - ) (140(1))

asymptotically as s — oo.

A proof is given in Appendix III. In the sequel, we apply this result
in order to bound E[R] for a class of kernels which is frequently used
in practice.

IV. APPLICATIONS TO CONSISTENCY AND CONVERGENCE RATES

In this section, we apply the spectral techniques introduced in Sec-
tion IIT in order to bound the expected regret term E[R] for several
practically important settings I{, i, thereby obtaining information con-
sistency rates via our main result.

2We have that A(w) = (27)~¢ [ exp(—iwTr)K(r)dr.

31t is conjectured in [6] that this requirement may not be necessary, but the
proof given there uses the bounded support of .
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A. Finite-Dimensional Covariance Functions

If K(z,2') = 2" 2", x,2' € R?, we obtain the parametric linear

model: f(z) = w"x, w ~ N(0,I) a priori. The RKHS H is {& —
wiz}. Let X = (21...2,)7 € R™?, then R = log |I + cX"' X]|.
It is shown in [16] that if ||| < 1 for all z, then R < dlog(1l +
cn/d). If the covariate distribution p has bounded support, we have
E[R] = O(log n), therefore, Bayesian prediction with the parametric
linear model is information consistent with rate O(n~ " logn). Note
that there is a linear dependence on the covariate dimensionality d. A
more general result, covering other parametric models, is given in [2].

B. Gaussian Kernel, Gaussian Covariates

The Gaussian (or Radial Basis Function) kernel is
K(r) =exp (—brz) , r=|z— @)

for input points 2 € R?. b > 0 is a scale parameter, in that b~ "/2 is
the typical length scale in A'. The Gaussian kernel is frequently used
in Machine Learning for tasks where d can be quite large. For small
input dimensions common in geostatistical applications, the Gaussian
kernel is not suitable, because it enforces an unreasonably high de-
gree of smoothness [11]. If we choose the covariate distribution to be
Gaussian, namely p(2) = N (2|0, (4a) 'I), the kernel eigenvalues
are known [18], and by using Lemma 1 we obtain a tight bound on
E[R]

Eflog [T+ ¢cK]|] = O ((log'n)d'H) .

Here, the leading constant is [log(1 + 2a/b)]~ ¢, which decreases in
a /b, being the squared ratio of the length scale of the kernel and the
standard deviation of p. This makes sense: if a /b is small, typical func-
tions (with RKHS norm of O(1)) change on average rapidly and sig-
nificantly within the typical range of y. In other words, the penalization
of such rapid variations is weaker under the RKHS norm, and therefore
the expected regret term has to be larger. If /b is large, typical func-
tions do not change much in the typical range of y, which justifies a
small expected regret term.

A proof is provided in Appendix II. The result matches our intu-
ition in that the regularization imposed by the RKHS norm becomes
weaker with a higher input dimensionality (the RKHS for dimension d
is actually the tensor product of d copies of the RKHS for dimension
1). To conclude, even though the RKHS H for this kernel is a space
dense in the continuous functions, the expected regret is very small.
This can be explained by the strong smoothness constraint enforced
via || » ||, which grows quickly with irregularities in f. With a view
on Section I and Theorem 1, we see that Bayesian GP prediction with
the Gaussian kernel is information consistent in any dimension d, and
for all @, b > 0, and we have an information rate bound of

1 2 _
Sl + 0 (n™ " (logm) ).

C. Matérn Kernels, Bounded Support Covariates

Recall that isotropic correlation functions are characteristic func-
tions of probability distributions. An important class of isotropic ker-
nels is obtained this way from Student-t distributions, it is referred to
as Matérn class (see [11] for details; we use [10, Sec. 4.2.1.] here)
ol—v

K(r)= i"(u)

(r/a)" K, (r/a), a>0, v>0 (8)

where I, is a modified Bessel function. The spectral density is

L(v+d/2) 4

A = fanlo) = Zampe’ (ko) O
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which is the multivariate ¢-density in R? with 2v4d degrees of freedom
and scale matrix o~ 2I. While o is a scale parameter, the parameter v
directly controls the smoothness of sample paths of the process: they
are [ times differentiable for some version of the process iff I < v. For
v = 1/2, K(r) = ¢ /% is the Ornstein—Uhlenbeck kernel, corre-
sponding GPs are Markov processes, and therefore very irregular. On
the other hand, if v — oo and « = I(2v)~*/? for fixed /, then K (r)
becomes the Gaussian kernel e ~("/") , whose sample paths are analytic
functions.

It is easy to see that A = f, , fulfils the conditions of Widom’s
theorem. For large 1, A(n) ~ A7f(2”+d), and from Theorem 2 we
obtain A, = O(s~*+9/4) if ;i has bounded support and density. We
show in Appendix IV that this implies that

E[R] =0 (nd/(QVer)(log n’):zu/(Zuﬁ»d)) . (10)
Note that the regret term is much larger than for the Gaussian kernel.
It decays the faster, the larger the smoothness parameter v becomes, or
the smaller the dimension d of the input space. Recalling Section I and
Theorem 1, we see that Bayesian GP prediction with the Matérn class
is information consistent in any dimension d and for any » > 0, and
we have an information rate bound of
%Hf”i +0 ('Ifzy/(sz)(log 71)2”/(2”+d)) . 11
Note that the leading constant in the bound on E[R] just derived
depends on the size T of the support of x. In fact, the dependence is
as large as 72" If 1 has unbounded support, we could try to ob-
tain insight into the setup K, p¢ by defining pr (2) = p(&)ljje) <1},
then studying the behavior of E,, [ R]. The result obtained above is not
useful in that respect.

D. Matérn Kernels: General Covariates

Let K be the Matérn kernel with spectral density A = f, ., and sup-
pose that (&) is bounded, but does not necessarily have bounded sup-
port. In this case, Theorem 2 is not useful. On the other hand, Widom’s
theorem we used so far has been proven only for ¢ of bounded support,
so that it cannot be used directly in order to obtain a bound on E[R]. We
can still obtain some insight into the pair I, i through the following
theorem.

Theorem 3: Let K (r) be from the Matérn class, with spectral den-
sity A(n) = fa.»(n). Suppose that the covariate distribution p has a
bounded density, such that

/I{IIxHST}H‘(T)d/(Z"H)dz <

where C' is a constant independent of 7" > 0. Define the bounded
support measure v with density py (2) = I <zyp(2), and let
{)\g)} be the spectrum of K w.r.t. ur. Then, for all T > 0 large
enough and for all 6 > 0, there exists an sg such that

AT <14 8)s™@FD s > .

Here, C' is a constant independent of 7', §.

A proof is given in Appendix IV. While the term s~ @D/ s the
same as that obtained from Theorem 2, the present theorem is stronger
(under an additional assumption on ), in that the leading constant does
not grow with T'. However, s¢ (defining the speed of convergence) may
depend on T, so the theorem does not imply any strong statement on the
asymptotics of A;. Some examples for ;¢ admissable in Theorem 3 are
given in Appendix IV: any Gaussian, or any Student-f with smoothness
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parameter v» > v (tails of p lighter than tails of A). On the other hand,
if vo < v, it is not admissable.

We can use Theorem 3 in order to obtain a bound on E,,.[R] of
the same form as (10). While the leading constant in this expression
does not depend on 7', the speed of convergence may do so, and at
present we cannot infer a result for E,,[ R] (if suppy is unbounded). In
the same sense, the information rate bound of (11) holds true for any
single 7" > 0. Note that for large enough 7', ;17 can be renormalized as
probability measure, with negligible effect on the constants. Obtaining
a rate bound for Matérn K’ and p of unbounded support remains an
important point for future work.

V. CONCLUSION

We stated a regret bound for cumulative log loss of Bayesian GP
prediction, compared to experts from the RKHS of the prior covariance
function, and we gave a fairly elementary proof. We argued how this re-
sult can be used to obtain tight information consistency results and rate
bounds, namely by bounding the expected regret term E[log [T + cK]|],
where K is the covariance matrix for the covariates x<,. We gave a
number of examples for classes of covariance functions of central im-
portance in practice, bounding the expected regret by way of the co-
variance operator eigenvalues, which are known in some cases or can
be obtained asymptotically in others. Our results depend strongly on
parameters of the covariance function and the covariate distribution,
and they provide a novel insight into regularization characteristics of
these parameters.

Many results about consistency of nonparametric Bayes predictors
are known [1]-[4], [19]. A strong notion of consistency is that the pos-
terior has to concentrate on arbitrarily small environments (w.r.t. some
metric) of the data-generating function f. Barron er al. [3], [4] give
such consistency results for general nonparametric methods, but they
show that apart from a simple local condition on the prior, namely, that
Kullback—Leibler environments of the true f have to be given positive
prior mass, additional nonintuitive global conditions are necessary for
posterior consistency. The weaker notion of information consistency
is used in [2], [3] and is shown to have nicer properties. In contrast
to that work, our results here are specific to Bayesian GP prediction,
although part of our argument holds for general Bayesian conditional
prediction. This has the advantage that our results depend strongly on
parameters of the model, such as the prior covariance function or the
assumed covariate distribution, which have a clear meaning for prac-
titioners working with these models. Since our results give a novel in-
terpretation of these parameters in terms of regularization properties,
they may serve as guidelines for prior choice.

We obtained information convergence rate bounds in a fairly direct
manner, and these depend strongly on the specifics of the model. In con-
trast, rates are very difficult to obtain for stronger notions of consistency
[5]. Zhang [19], [20] obtains convergence results and rates using the
same convex duality relationship we do here. His results hold for gen-
eral nonparametric methods, and not surprisingly he requires a global
condition on the prior as well. His rate bounds and global condition
depend on upper metric entropies, which are very hard to work with
in a concrete case such as ours here. Opper and Vivarelli [17] provide
bounds on E[R] for the Gaussian kernel, their motivation is that R con-
trols the learning curve of GP regression with Gaussian noise (see end
of Section II).

APPENDIX |

Proof of Theorem 1: In this appendix, we provide a proof for The-
orem 1. We begin with the representer theorem [14], which is proved
here for completeness.
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Lemma 2 (Representer Theorem): Let H be the RKHS for
kernel K, and let p(2<,,, f) be a functional of 2<,, = {z1,...,2,}
and f € H. Let H, be the span of {K (-, z;)}. If p(<n.f) =
p(@<n, (f(2i))i), then

juf p@< /) +1fll = b p@<a, )+ £

Proof: Since H,, C H, one direction is trivial. For the other one,
let f € H,and let f be the orthogonal projection of f onto H, w.r.t.
| [l Now, f(2i) = f(@i) + (f — f, K(-,x:))x = f(2i), because
f — f is orthogonal to H,,. Here, we used the reproducing property of
K. Therefore, p(2<n, f) = p(®<n, f), and || f|lx < ||fll«, which
proves the reverse direction.
We now prove our main result. Let 7,, be the span of { K'(-, &;) }. Fix
f() =X, aiK(-, ;) € Hn. We start with the following inequality:

—log Pos(y<,) <Eq [~log P(y<,|u(-)] + D[Q || Pus]

= = Eqllog P(yilu(z:))] + D[Q || Pps] (12)
i=1

where ), P, are distributions over the function u(-). This inequality
is an instance of the following Fenchel-Legendre duality relationship
[21], [22]

Elg(v)] < logEr [¢/*)] + D[Q || P]

where P, () are distributions over v. The inequality is an equality for
dQ x e?dP.In our case, P is the zero-mean GP prior P;,, and () is
a GP constructed as follows. Let 72 > 0 (to be specified below), and
let () be the posterior from a GP model with prior P, and Gaussian
likelihood term []"_, N (gi|u(z;),7%), where § = (K + 7°I)a. We
have Eg[u(-)] = f(-). Letu = (u(;));.

Since dQ(u(+)) x N(u|y, 72I)d Py, (u(-)), we have that

D[Q(u(+)) || Pos(u(-))] = D[Q(w) || Pos(u)]
andif B = I + 772K, then

D[Q || Prs] =D[Q(w) || Pps(u)]
= (1/2) (log IB| +tetB™ —n + aTKa) .

By expanding — log P(y|u(2)) to second order around Eq[u(z;)] =
f(#;), we have

Eq[-log P(yilu(xi))] < —log P(yi|f(®:)) + (¢/2)Varg[u(w:)]
so that
Bq [~ log Py, u()] < = log Py, () + GtrVarg[ul.

Here, Varg[u] = (K~'+772I)~' = KB™". Combining the bounds
gives

1
—log Ph(y<,) < —log Py, |f() + 5lIfllk

—i—% (c tr KB~ + log |B| + trB™' — n) (13)

where we used o’ Ka = ||f||% (2). Minimizing over 72 results in
7% = ¢~ (using the spectral decomposition of K), and plugging this

into (13) proves the theorem in the restricted case
- . 12
,inf —log Py<nl FO) + 51151k

“The relative entropy is defined as D[Q) || P] = Eq[log(dQ/dP)], dQ/dP
the Radon—Nikodym derivative, if () < P, and oo otherwise [23, Theorem
1.31]. In our case, dQ)/dP depends on u only.
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Since the first term depends on f only through the f(z;), Lemma 2
allows us to take the infimum over all of  instead. This completes the
proof of the inequality.

Now, suppose that P(y|f(2)) = N(y|f(z),s?). There are two
bounding steps in the proof: the convex duality argument of (12), and
the quadratic expansion of —log P(y|f(z)). The latter is an equality
in this case. We noted above that the convex duality step is an equality
for dQ x e9dP, where g = log P(y_,|f). This Q is constructed as
above if &« = (K + ¢*I)"'y_,,, so that equality holds for the corre-
sponding ¥ = >, i K (-, m;).

APPENDIX II

Regret for Gaussian Kernel: In this appendix, we bound the ex-
pected regret E[R] for the Gaussian kernel K and Gaussian covariate
distribution p1 (see Section IV-B ). We have K(r) = exp(—br?),
p(x) = N (2|0, (4a)™"'I). In this case, the eigenexpansion of K w.r.t.
1(4) is known explicitly for d = 1 [18]

N=4/2B

A

We first need to obtain a bound on the eigenvalues in the general case
of d > 1. We use the fact that K (x) = Hj:l K(x;) and p(z) =
Hj.: | (). Therefore, it is clear that the eigenvalues of K in R? are
d-products of the eigenvalues for the scalar i, thus, (2a /A)d/ 2B ap-
pears with multiplicity

N =N(,d) = <l+d_1>.

d—-1

N is the number of ordered sets (n1,...,nq),n; > Owith ), n; = 1.
This can be seen by noting that N({,2) = { + 1land N(I,d + 1) =
S, N(i,d). We need the bound N (1,d) < 1% — (1 — 1) ford >
2,1 > 2. The proof is elementary, using the semantics of N(/,d).
Now, consider the sequence of eigenvalues A for d dimensions, con-
sisting of the values v; = (2a/A)*?B' with multiplicity N(I,d).
Since N(1,d) = d > 1, we alter the sequence s by removing d — 1
of the replicas of v;. For this altered sequence, we have that

Ao < 2a/0)2BY s> 0.
To see this, split the range s > 0 into blocks of size N(I,d) corre-
sponding to the value of v;. Now, for s = (I— 1) +1,....,1% we have
that v; < (251‘/‘4)”2351/‘1, because B < 1. Furthermore, we have
N(I,d) < 1?9 — (I — 1)?. We effectively replace the v; block of size
N(l,d) by a block with more elements, whose prefix is a pointwise
upper bound.

The modification of the A, sequence leads to an additional O(log n)
term in the final result, which is subdominant and will not be mentioned
in the sequel. Let ¢ = ¢(2a/A4)*/?. Using Lemma 1, we have that

E[R] < S log (1+endo) < 3 log (1 + E'anl/d> . (4
$>0 k>0

B is strictly decreasing in 4a/b, with B — 1 as a/b — 0. Leta =
—log B > 0. We split the right-hand side of (14) into two parts 51 +
Sa. For ko = [((logn)/a)?], we have

ko—1

S = Z log (1 + Ean]/d)
k=0
< oz_d(logn)d log(1+ ¢n)
=0 ((log n)d+1) .
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1/d
Next, nB*o < 1, so that

S, = Z log (1 + E'n,Bkl/d)

&>k
<én Z Bkl/d < E(l -I-n/ exp (—a:vl/d) dw)
k> ko ko

<é (1 + da~"nT (d,log n)) .

Here, we first use log(1+ #) < =, then bound the series by an integral
and make use of ka/d > (logn)/a.

F(d,ﬁ):/ et lqt
Js

is the incomplete Gamma function (tail version). We use the substitu-
tion t = aar'/* and the fact that 3 — T'(d, 3) is nonincreasing. Since
T(d,3) = (d = 1)le™? 2020 3% /1! for d € N [24, Eq. 8.352.2], we
have

d—1

d k
S, < é <1 +dla" Z %) =0 ((log n)d_l)
k=0 -

thus the expected regret for the Gaussian kernel is O((log n)**"). The
leading constant is o % = [log(1 + 2a/b)]~“. While the leading term
does not depend on ¢, there is a term ((logn)/a)?(log ¢), clarifying
the dependence on c.

APPENDIX IIT
WIDOM’S THEOREM

In this appendix, we state a theorem of Widom [6] and show how
Theorem 2 is derived from this result. More details can be found in
[25].

Let K'(7) be an isotropic covariance function with spectral density
Mw), ie.,

AMw) = (27r)7d/1{(r)e”"’Trdr.

Note that A(w) = A(n), 5 = ||w||. Widom requires that A(57) > 0, and
that its tails do not decay too fast. First, as 5 — oo: A(n + o(n)) ~
A(n). Second: A(n) = o(A(o(n))) for any o(n) — oo, o(n)/n —
0. These are fulfilled for common spectral densities if A(n) does not
decay faster than poly(1/7). Moreover, the distribution z has to have
a bounded density j(2) and bounded support. Let

'u!(&‘) = (QW)_d/I{M(I)/\(w)>(27r)—d£}(lmdw

and s = s(e) = min{s'|A\;; > =}. Widom’s theorem states that
¥(e) ~ s(e) ase — 0. Note that if ¢ is strictly decreasing, and if
¢ (s 4+ 0(s)) ~ ¥ " (s), then this implies that X\, ~ ¢~ (s).

We now prove Theorem 2. The support of p is contained in the ball
{z|||2|| < T}, whose volume is V7 = 7%/2T(d/2 4+ 1)"'T<. Fur-
thermore, p(x) < D. We can upper-bound (=) by replacing p by
ju (il‘) = DI{HI”ST} > ,u(:I:) We have

U(e) < (2m) Vr /I{A(w)Z(Zr)’dela}dw
=@m ™V /I{uwngrl(m}dw = (2m) ViVy1600

where v = (27)~7D~'. Here, = is taken small enough, so that
A7 (~e) exists. We equate the right-hand side with s and solve for ¢,
noting that A" is strictly decreasing.
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APPENDIX IV
THE MATERN CLASS

In this appendix, we bound E[R] for the Matérn class (8) with pa-
rameters «, v. More details are given in [25]. Recall that there exists
A, 5o such that s < As~ D/ for all s > 59. We use Lemma 1
and split the sum over s into two parts S1 4+ Sz, where .57 runs up to
5o = n/+ D (1og n)™ and 7 is chosen below. Since so grows with
n, we can assume that so > So. Then

sp—1
51 = Z log(1+ cnXs) = O (nd/(QVer) (log n,)lJrT)

s=0
since s < K(U)” 2. Furthermore

Sy = Z log(14+enXs) =0 | n Z g~ (utd)/d

s>s80 s>80

=0 (10gn)—r(2u+d)/d Z(S/SO)—(2u+d)/d

s2>8p
We lower-bound s/sq by sq repetitions of 1,2, ..., thus
S2 =0 | (log 71)77(2D+d)/dso Z fGrtd/d

k>1

-0 (nd/<2u+d) (log ,n,)r(l—(2u+d)/di>)

because the series converges for » > () (it is a zeta function). Choosing
T = —d/(2v + d), we have

E[R|=0 (71,d/(2“+d)(10g 71)2"/(2”+d)) .

Note that the leading constant is an affine function of A, the leading
constant in the eigenvalue asymptotics.

Next, we prove Theorem 3. Recall Appendix III, we use ¢ (¢) for
the clipped measure uy. Let ¢ = v + d/2,y = 1 + (an)®. Trans-
forming to polar coordinates, then to y, gives

wr(t‘)u/ / Lyacou(a(y — 1) dyde
lell<z J1

where p = (c12)™", 1 a constant, and @ = (d — 2)/2 > —1. Inte-
grating out y gives

Pp(e) ~ Clp(aJrl)/q /I{Hz||§T}N(93)(a+1)/qd-t

where ' is a constant. The latter integral is bounded by C', s0 ¢ (g) ~
Coe~¥/Cv+d) ¢y = C’lécfd/(2”+d). IfC = C’§2”+d)/d, our state-
ment follows from Widom’s theorem.

Finally, we give some examples for p fulfilling the assumptions of
Theorem 3. If u(2) = N(u, X) is a multivariate Gaussian, then

/I{HIIIST}N(m)(aH)/qdﬂ?

/(20 2v+d /2
= [2ng|/ 2D <T> Exa, vt/ [<r)]

where the latter expectation is bounded above by one, giving a bound
independent of 1', which is tight as T — oo.

Next, let u(®) = fa, .. (||2||) be a Student-¢ density. Let go =
v2 +d /2,0 = g2/q. The same mathematical operation as above gives

jv
/1{\\z||§7}u($)(“+1)/qu°‘/ 27— 1)

1

with T = 1 4 (a2T)?. We employ the binomial theorem to write
(z — 1)* as polynomial in z of degree a. If v > v, then o > 1, so
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all terms z" in the integrand have x < —1, and the final value can be
bounded independently of 7. If o = v, the integrand features »~*,
giving a term log T.1f v» < v, the final value contains 7+ (1=7)
We see that i is admissable for v» > v (lighter tails than )), but inad-
missable for v, < v.
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