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We propose a measure of riskiness of “gambles” (risky assets) that is
objective: it depends only on the gamble and not on the decision
maker. The measure is based on identifying for every gamble the
critical wealth level below which it becomes “risky” to accept the
gamble.

I. Introduction

You are offered a gamble (a “risky asset”) g in which it is equally likely
that you gain $120 or lose $100. What is the risk in accepting g? Is there
an objective way to measure the riskiness of g? “Objective” means that the
measure should depend on the gamble itself and not on the decision
maker; that is, only the outcomes and the probabilities (the “distribu-
tion”) of the gamble should matter.

Such objective measures exist for the “return” of the gamble—its
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expectation, here —and for the “spread” of the gamble—E[g] p $10
its standard deviation, here . While the standard deviationj[g] p $110
is at times used also as a measure of riskiness, it is well known that it is
not a very good measure in general. One important drawback is that it
is not monotonic: a better gamble h, that is, a gamble with higher gains
and lower losses, may well have a higher standard deviation and thus
be wrongly viewed as having a higher riskiness.1

We propose here a measure of riskiness for gambles that, like the ex-
pectation and the standard deviation, is objective and is measured in
the same units as the outcomes; moreover, it is monotonic and has a
simple “operational” interpretation.

Let us return to our gamble g. The risk in accepting g clearly depends
on how much wealth you have. If all you have is $100 or less, then it is
extremely risky to accept g : you risk going bankrupt (assume there is
no “Chapter 11,” etc.). But if your wealth is, say, $1 million, then ac-
cepting g is not risky at all (and recall that the expectation of g is
positive). While one might expect a smooth transition between these
two situations, we will show that there is in fact a well-defined critical
wealth level that separates between two very different “regimes”: one in
which it is “risky” to accept the gamble and the other in which it is not.2

What does “risky” mean, and what is this critical level? For this purpose
we consider a very simple model, in which a decision maker faces an
unknown sequence of gambles. Each gamble is offered in turn and may
be either accepted or rejected; or, in a slightly more general setup, any
proportion of the gamble may be accepted.

We show that for every gamble g there exists a unique critical wealth
level such that accepting gambles g when the current wealth isR(g)
below the corresponding leads to “bad” outcomes, such as de-R(g)
creasing wealth and even bankruptcy in the long run; in contrast, not
accepting gambles g when the current wealth is below yields “good”R(g)
outcomes: no-bankruptcy is guaranteed, and wealth can only increase
in the long run.3 In fact, almost any reasonable criterion—such as no-
loss, an assured gain, or no-bankruptcy—will be shown to lead to exactly
the same critical point . We will call the riskiness of the gambleR(g) R(g)
g since it provides a sharp distinction between the “risky” and the “non-
risky” decisions. The risky decisions are precisely those of accepting
gambles g whose riskiness is too high, specifically, higher than theR(g)

1 Take the gamble g above; increasing the gain from $120 to $150 and decreasing the
loss from $100 to $90 makes the standard deviation increase from $110 to $120.

2 We distinguish between the terms “risky” and “riskiness”: the former is a property of
decisions, the latter of gambles. Thus, accepting a gamble in a certain situation may be
a risky decision (or not), whereas the riskiness of a gamble is a measure that, as we shall see,
determines when the decision to accept the gamble is risky.

3 All these occur with probability one (i.e., almost surely); see Secs. III and IV for the
precise statements.
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current wealth W (i.e., ): they lead to bad outcomes and pos-R(g) 1 W
sibly bankruptcy. In short, a “phase transition” occurs at .R(g)

Moreover, the riskiness measure R that we obtain satisfies all our initial
desiderata: it is objective (it depends only on the gamble), it is scale-
invariant and thus measured in the same unit as the outcomes,4 it is
monotonic (increasing gains and/or decreasing losses lowers the risk-
iness), it has a simple operational interpretation, and, finally, it is given
by a simple formula. We emphasize that our purpose is not to analyze
the most general investment and bankruptcy models, but rather to use
such simple operational setups as a sort of “thought experiment” in
order to determine the riskiness of gambles.

In summary, what we show is that there is a clear and robust way to
identify exactly when it becomes risky to accept a gamble, and then

the riskiness of a gamble g is defined as the critical wealth below
which accepting g becomes risky.

The starting point of our research was the “economic index of risk-
iness” recently developed by Aumann and Serrano (2008).5 While at-
tempting to provide an “operational” interpretation for it, we were led
instead to the different measure of riskiness of the current paper. A
detailed comparison of the two can be found in Section VI.A. Here we
will only mention that the “index” compares gambles in terms of their
riskiness, whereas our R is a “measure” that is defined separately for
each gamble6 and, moreover, has a clear interpretation, in monetary
terms.7

The paper is organized as follows. The basic model of no-bankruptcy
is presented in Section II, followed in Section III by the result that yields
the measure of riskiness. Section IV extends the setup and shows the
robustness of the riskiness measure; an illustrating example is provided
at the end of the section. The properties of the riskiness measure are
studied in Section V. Section VI discusses the literature and other per-
tinent issues, in particular, the work of Aumann and Serrano (2008) on
the “economic index of riskiness” and of Rabin (2000) on “calibration.”
The proofs are relegated to the Appendix.

4 That is, the unit (“currency”) in which the outcomes are measured does not matter:
rescaling all outcomes by a constant factor rescales the riskiness by the same l. Mostl 1 0
measures of riskiness satisfy this condition; see Secs. VI.D, VI.E.1, and VI.E.9.

5 This index was used in the technical report of Palacios-Huerta, Serrano, and Volij
(2004); see Aumann and Serrano (2008, 810n).

6 This explains the use of the different terms “index” and “measure.”
7 Such an interpretation is problematic for the Aumann-Serrano index, which is deter-

mined only up to a positive multiple.
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II. The Basic Model

This section and the next deal with the simple basic model; it is gen-
eralized in Section IV.

A. Gambles

A gamble g is a real-valued random variable8 having some negative values—
losses are possible—and positive expectation, that is, andP[g ! 0] 1 0

. For simplicity9 we assume that each gamble g has finitely manyE[g] 1 0
values, say , with respective probabilitiesx , x , … , x p , p , … , p1 2 m 1 2 m

(where and ). Let denote the collection of all suchmp 1 0 � p p 1 Gi iip1

gambles.
Some useful notation: is the maximal loss of g ;L(g) :p � min x 1 0i i

is the maximal gain of g; andM(g) :p max x 1 0 kgk :p max Fx F pi i i i

is the ( ) norm of g. One way to view g is that onemax {M(g), L(g)} ��

buys a “ticket” to g at a cost of ; this ticket yields various prizesL(g) 1 0
with probability each (and so there is a positive probabilityL(g) � x pi i

of getting no prize—when ).x p �L(g)i

B. Gambles and Wealth

Let the initial wealth be . At every period , the decisionW t p 1, 2, …1

maker, whose current wealth we denote , is offered a gambleW g �t t

that he may either accept or reject. If he accepts , then his wealthG gt

next period will be ;10 and if he rejects , thenW p W � g g W pt�1 t t t t�1

. Exactly which gamble is offered may well depend on the periodW gt t

t and the past history (of gambles, wealth levels, and decisions); thus,
there are no restrictions on the stochastic dependence between the
random variables . Let G denote the process . We emphasizeg (g )t t tp1,2,…

that there is no underlying probability distribution on the space of
processes from which G is drawn; the setup is non-Bayesian, and the
analysis is “worst-case.” Thus, at time t the decision maker knows nothing
about which future gambles he will face nor how his decisions will
influence them.

To avoid technical issues, it is convenient to consider only finitely
generated processes; such a process G is generated by a finite set of
gambles such that the gamble that is(1) (2) (m)G p {g , g , … , g } O G g0 t

offered following any history is a nonnegative multiple of some gamble

8 We take g to be a random variable for convenience; only the distribution of g will
matter. P denotes “probability.”

9 A significant assumption here is that of “limited liability”; see Sec. VI.E.7.
10 That is, the gamble is realized, and with x denoting its outcome, .g W p W � xt t�1 t
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in ; that is, it belongs to the finitely generated coneG G p {lg : l ≥ 00 0

.11and g � G }0

C. Critical Wealth and Simple Strategies

As discussed in the introduction, we are looking for simple rules that
distinguish between situations that are deemed “risky” and those that
are not: the offered gamble is rejected in the former and accepted in
the latter. Such rules—think of them as candidate riskiness measures—
are given by a “threshold” that depends only on the distribution of the
gamble and is scale-invariant. That is, there is a critical-wealth function Q
that associates to each gamble a number in [0, �], withg � G Q(g)

for every , and which is used as follows: a gambleQ(lg) p lQ(g) l 1 0
g is rejected at wealth W if , and is accepted if . WeW ! Q(g) W ≥ Q(g)
will refer to the behavior induced by such a function Q as a simple strategy
and denote it . Thus accepts g at wealth and at any highers s Q(g)Q Q

wealth, and rejects g at all lower wealths: is the minimal wealth atQ(g)
which g is accepted. In the two extreme cases, means that gQ(g) p 0
is always accepted (i.e., at every wealth ), whereas meansW 1 0 Q(g) p �
that g is always rejected.12

D. No-Bankruptcy

Since risk has to do with losing money and, in the extreme, bankruptcy,
we start by studying the simple objective of avoiding bankruptcy. Assume
that the initial wealth is positive (i.e., ) and that borrowing is notW 1 01

allowed (so for all t).13 Bankruptcy occurs when the wealth be-W ≥ 0t

comes zero14 or, more generally, when it converges to zero, that is,
. The strategy s yields no-bankruptcy for the process G andlim W p 0tr� t

the initial wealth if the probability of bankruptcy is zero, that is,W1

.15 Finally, the strategy s guarantees no-bankruptcy ifP[lim W p 0] p 0tr� t

it yields no-bankruptcy for every process G and every initial wealth .W1

Thus, no matter what the initial wealth is and what the sequence of

11 The term means that the values of g are rescaled by the factor l, whereas thelg
probabilities do not change (this is not to be confused with the “dilution” of Sec. V).

12 See Sec. VI.E.6 and Sec. G in the Appendix for more general strategies.
13 If borrowing is allowed up to some maximal credit limit C, then shift everything by

C (see also Sec. VI.C).
14 We emphasize that “bankruptcy” is to be taken in the simple, naive, and literal sense

of losing all the wealth (rather than the legal and regulatory sense—e.g., Chapter 11—
where losses may be limited and issues of agency, moral hazard, and risk shifting may
arise).

15 is the probability distribution induced by the initial wealth , the processP { P WW ,G,s 11

G, and the strategy s.
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gambles will be, the strategy s guarantees that the wealth will not go to
zero (with probability one).

III. The Measure of Riskiness

The result in the basic setup is
Theorem 1. For every gamble there exists a unique realg � G

number such that a simple strategy with critical-wealthR(g) 1 0 s { sQ

function Q guarantees no-bankruptcy if and only if for everyQ(g) ≥ R(g)
gamble . Moreover, is uniquely determined by the equationg � G R(g)

1
E log 1 � g p 0. (1)( )[ ]R(g)

The condition says that the minimal wealth level atQ(g) ≥ R(g) Q(g)
which g is accepted must be or higher, and so g is for sure rejectedR(g)
at all wealth levels below , that is, at all . Therefore, weR(g) W ! R(g)
get

Corollary 1. A simple strategy s guarantees no-bankruptcy if and
only if for every gamble g � G

s rejects g at all W ! R(g). (2)

Thus is the minimal wealth level at which g may be accepted;R(g)
as discussed in Section I, it is the measure of riskiness of g.

Simple strategies s satisfying (2) differ in terms of which gambles are
accepted. The “minimal” strategy, with for all g, never acceptsQ(g) p �
any gamble; the “maximal” one, with for all g, accepts gQ(g) p R(g)
as soon as the wealth is at least as large as the riskiness of g ; these two
strategies, as well as any strategy in between, guarantee no-bankruptcy
(see also proposition 6 in the Appendix, Sec. A). We emphasize that
condition (2) does not say when to accept gambles, but merely when a
simple strategy must reject them, to avoid bankruptcy. Therefore, R(g)
may also be viewed as a sort of minimal “reserve” needed for g.

Some intuition for the formula (1) that determines R will be provided
in the next section. To see how it is applied, consider gambles g in which
gaining a and losing b are equally likely (with so that );0 ! b ! a g � G
it is immediate to verify that if and only ifE[log (1 � g/R)] p 0

, and so by formula (1). In(1 � a/R)(1 � b/R) p 1 R(g) p ab/(a � b)
particular, for and we get , and fora p 120 b p 100 R(g) p 600

and we get .a p 105 b p 100 R(g) p 2,100
The proof of theorem 1 is relegated to the Appendix, Section A; an

illustrating example is provided in Section IV.
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IV. Extension: The Shares Setup

We will now show that the distinction made in the previous section
between the two “regimes” is robust and does not hinge on the extreme
case of long-run bankruptcy. To do so we slightly extend our setup by
allowing the decision maker to take any proportion of the offered gamble.
This results in a sharper distinction—bankruptcy on one side and wealth
growing to infinity on the other—which moreover becomes evident
already after finitely many periods. The intuitive reason is that it is now
possible to overcome short-term losses by taking appropriately small
proportions of the offered gambles (which is not the case in the basic
model of Sec. III, where all future gambles may turn out to be too risky
relative to the wealth).

Formally, in this setup—which we call the shares setup—the decision
maker can accept any nonnegative multiple of the offered gamble gt

(i.e., for some ) rather than just accept or reject (whicha g a ≥ 0 gt t t t

corresponds to ). Think, for instance, of investments that cana � {0, 1}t

be made in arbitrary amounts (shares of equities). Let Q : G r (0, �)
be a critical-wealth function (we no longer allow andQ(g) p 0

) with for all . The corresponding simpleQ(g) p � Q(lg) p lQ(g) l 1 0
shares strategy is as follows: at wealth one accepts g (i.e.,s { s Q(g)Q

), and at any wealth W one accepts the proportiona p 1 a p W/Q(g)
of g ; that is, the gamble ag that is taken is exactly the one for which

. The result isQ(ag) p W
Theorem 2. Let be a simple shares strategy with critical-s { sQ

wealth function Q. Then:
(i) (almost surely (a.s.)) for every process G if andlim W p �tr� t

only if for every gamble .Q(g) 1 R(g) g � G
(ii) (a.s.) for some process G if and only iflim W p 0tr� t

for some gamble .Q(g) ! R(g) g � G
Theorem 2 is proved in the Appendix, Section B (proposition 8 there

provides a more precise result). Thus, our measure of riskiness R pro-
vides the threshold between two very different “regimes”: bankruptcy
(i.e., a.s., when the riskiness of the accepted gambles is higherW r 0t

than the wealth), and infinite wealth (i.e., a.s., when the riskinessW r �t

of the accepted gambles is lower than the wealth). As a consequence,
one may replace the “no-bankruptcy” criterion with various other cri-
teria, such as:

• no-loss: (a.s.);lim inf W ≥ Wtr� t 1

• bounded loss: (a.s.) for some , orlim inf W ≥ W � C C ! Wtr� t 1 1

(a.s.) for some ;lim inf W ≥ cW c 1 0tr� t 1

• assured gain: (a.s.) for some , orlim inf W ≥ W � C C 1 0tr� t 1

(a.s.) for some ;lim inf W ≥ (1 � c)W c 1 0tr� t 1

• infinite gain: (a.s.).lim W p �tr� t



CHECKED 8 journal of political economy

Thursday Oct 01 2009 02:07 PM JPE v117n5 2008471 VLONGAWA

Moreover, in the no-bankruptcy as well as any of the above conditions,
one may replace “almost surely” (a.s.) by “with positive probability.” For
each one of these criteria, theorem 2 implies that the threshold is the
same: it is given by the riskiness function R. For example:

Corollary 2. A simple shares strategy guarantees no-loss ifsQ

for all g, and only if for all g.Q(g) 1 R(g) Q(g) ≥ R(g)
By way of illustration, take the gamble g of Section I in which it is

equally likely to gain $120 or lose $100, and consider the situation in
which one faces a sequence of gambles that are independent drawsgt

from g. Let be the critical wealth that is used for g ; then inq :p Q(g)
each period one takes the proportion of . Therefore,a p W/q gt t t

W 1tW p W � a g p W � g p W 1 � g ,t�1 t t t t t t t( ) ( )q q

and so . Assume first that ; thentW p W � (1 � (1/q)g ) Q(g) p $200t�1 1 tip1

equals either or with1 � (1/q)g 1 � 120/200 p 1.6 1 � 100/200 p 0.5t

equal probabilities (these are the relative gross returns of g when the wealth
is $200; in net terms, a gain of 60 percent or a loss of 50 percent). In
the long run, by the Law of Large Numbers, about half the time the
wealth will be multiplied by a factor of 1.6 and about half the time by a
factor of 0.5. So, on average, the wealth will be multiplied by a factor of

per period, which implies that it will almost surely�g p 1.6 7 0.5 ! 1
converge to zero:16 bankruptcy! Now assume that we use Q(g) p

instead; the relative gross returns become$1,000 1 � 120/1,000 p
or , which yield a factor of �1.12 1 � 100/1,000 p 0.9 g p 1.12 7 0.9 1

per period, and so the wealth will almost surely go to infinity rather1
than to zero. The critical point is at , where the per-periodQ(g) p $600
factor becomes ; the riskiness of g is precisely .17g p 1 R(g) p $600

Indeed, accepting g when the wealth is less than $600 yields “risky”
returns—returns of the kind that if repeated lead in the long run to
bankruptcy; in contrast, accepting g only when the wealth is more than
$600 yields returns of the kind that guarantee no-bankruptcy and lead
to increasing wealth in the long run. We point out that these conclusions
do not depend on the independent and identically distributed (i.i.d.)
sequence that we have used in the illustration above; any sequence of
returns of the first kind leads to bankruptcy, and of the second kind,
to infinite growth.

The criteria up to now were all formulated in terms of the limit as t
goes to infinity. However, the distinction between the two situations can

16 Indeed, will be close to . Intuitively, to offset a losst/2 t/2 tW W (1.6) (0.5) p W g r 0t�1 1 1 tr�

of 50 percent, it needs to be followed by a gain of 100 percent (since the basis has changed);
a 60 percent gain does not suffice.

17 It is easy to see that the growth factor is larger than 1 if and only if the expectation
of the log of the relative gross returns is larger than 0; this explains formula (1).



operational measure of riskiness CHECKED 9

Thursday Oct 01 2009 02:07 PM JPE v117n5 2008471 VLONGAWA

be seen already after relatively few periods: the distribution of wealth
will be very different. In the example above, the probability that there
is no loss after t periods (i.e., ) is, for , about 0.027P[W ≥ W ] t p 100t�1 1

when one uses and about 0.64 when ; theseQ(g) p $200 Q(g) p $1,000
probabilities become and 0.87, respectively, for . In terms�910 t p 1,000
of the median wealth, after periods, it is only 0.000014 timest p 100
the original wealth when , in contrast to 1.48 times whenQ(g) p $200

(for , these numbers are and 53.7, re-�48Q(g) p $1,000 t p 1,000 10
spectively).18

V. Properties of the Measure of Riskiness

The riskiness measure enjoys many useful properties; they all follow
from formula (1). A number of basic properties are collected in prop-
osition 1 below, following which we discuss two issues of particular in-
terest: stochastic dominance and continuity.

Some notation: Given and the gamble g that takes the values0 ! l ! 1
with respective probabilities , the l-dilutionx , x , … , x p , p , … , p1 2 m 1 2 m

of g, denoted , is the gamble that takes the same valuesl ∗ g x , x ,1 2

, but now with probabilities , and takes the value… , x lp , lp , … , lpm 1 2 m

0 with probability ; that is, with probability l the gamble g is per-1 � l

formed, and with probability there is no gamble.1 � l

Proposition 1. For all gambles g, :19h � G
(i) Distribution: If g and h have the same distribution, then

.R(g) p R(h)
(ii) Homogeneity: for every .R(lg) p lR(g) l 1 0

(iii) Maximal loss: .R(g) 1 L(g)
(iv) Subadditivity: .R(g � h) ≤ R(g) � R(h)
(v) Convexity: for everyR(lg � (1 � l)h) ≤ lR(g) � (1 � l)R(h)

.0 ! l ! 1
(vi) Dilution: for every .R(l ∗ g) p R(g) 0 ! l ≤ 1

(vii) Independent gambles: If g and h are independent random vari-
ables, then .min {R(g), R(h)} ! R(g � h) ! R(g) � R(h)

Moreover, there is equality in (iv) and (v) if and only if g and h are
proportional (i.e., for some ).h p lg l 1 0

Thus, only the distribution of a gamble determines its riskiness; the
riskiness is always larger than the maximal loss (which may be viewed
as an “immediate one-shot risk”); the riskiness measure is positively
homogeneous of degree one and subadditive, and thus convex; diluting

18 Taking and (closer to ) yields afterQ(g) p $500 Q(g) p $700 R(g) p $600 t p
periods a median wealth that is 0.018 and 7.66, respectively, times the original wealth.1,000

19 In (iv), (v), and (vii), g and h are random variables defined on the same probability
space.
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a gamble does not affect the riskiness;20 and the riskiness of the sum of
independent gambles lies between the minimum of the two riskinesses
and their sum.

Proofs can be found in the Appendix, Section C; see proposition 9
there for sequences of i.i.d. gambles.

A. Stochastic Dominance

There are certain situations in which one gamble g is clearly “less risky”
than another gamble h. One such case occurs when in every instance
the value that g takes is larger than the value that h takes. Another
occurs when some values of h are replaced in g by their expectation
(this operation of going from g to h is called a “mean-preserving
spread”). These two cases correspond to “first-order stochastic domi-
nance” and “second-order stochastic dominance,” respectively (see
Hadar and Russell 1969; Hanoch and Levy 1969; Rothschild and Stiglitz
1970, 1971).

Formally, a gamble g first-order stochastically dominates a gamble h,
which we write , if there exists a pair of gambles and that′ ′g SD h g h1

are defined on the same probability space such that: g and have the′g
same distribution; h and have the same distribution; and and′ ′ ′h g ≥ h

. Similarly, g second-order stochastically dominates h, which we write′ ′g ( h
, if there exist and as above, but now the condition′ ′g SD h g h2

“ ” is replaced by “ and is obtained from by a finite′ ′ ′ ′′ ′ ′′g ≥ h g ≥ h h h
sequence of mean-preserving spreads, or as the limit of such a
sequence.”

The importance of stochastic dominance lies in the fact that, for
expected-utility decision makers (who have a utility function u on out-
comes and evaluate each gamble g by ),21 we have the following:E[u(g)]

if and only if g is strictly preferred to h whenever the utilityg SD h1

function u is strictly increasing; and if and only if g is strictlyg SD h2

preferred to h whenever the utility function u is also strictly concave.
Our riskiness measure is monotonic with respect to stochastic dom-

inance: a gamble that dominates another has a lower riskiness. In con-
trast, this desirable property is not satisfied by most existing measures
of riskiness (see Sec. VI.D).

Proposition 2. If g first-order stochastically dominates h or if g
second-order stochastically dominates h, then .R(g) ! R(h)

Proposition 2 is proved in the Appendix, Section D.

20 In our setup of sequences of gambles, dilution by a factor l translates into “rescaling
time” by a factor of (e.g., corresponds to being offered a gamble on average1/l l p 1/2
once every two periods). Such a rescaling does not affect the long-run outcome, which
explains why the riskiness does not change.

21 Or, if the wealth W is taken into account, by .E[u(W � g)]
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B. Continuity

The natural notion of convergence for gambles is convergence in dis-
tribution; after all, only the distribution of the gamble determines the
riskiness; see proposition 1(i). Roughly speaking, gambles are close in
distribution if they take similar values with similar probabilities. For-
mally, a sequence of gambles converges in distribution to(g ) O Gn np1,2,…

a gamble , denoted , if for every boundedDg � G g r g E[f(g )] r E[f(g)]n n

and uniformly continuous real function f (see Billingsley 1968). We get
the following result:

Proposition 3. Let be a sequence of gambles with(g ) O Gn np1,2,…

uniformly bounded values; that is, there exists a finite K such that
for all n. If and as , thenD

Fg F ≤ K g r g � G L(g ) r L(g) n r �n n n

as .R(g ) r R(g) n r �n

Proposition 3 is proved in the Appendix, Section E, as a corollary of
a slightly more general continuity result (proposition 10).

To see that the condition is indispensable, let takeL(g ) r L(g) gn n

the values 2, �1, and �3 with probabilities ,(1/2)(1 � 1/n) (1/2)(1 �
, and , respectively, and let g take the values 2 and �1 with1/n) 1/n

probabilities and . Then but , andD1/2 1/2 g r g L(g ) p 3 ( 1 p L(g)n n

.R(g ) r 3 ( 2 p R(g)n

Though at first sight the discontinuity in the above example may seem
disconcerting, it is nevertheless natural, and our setup helps to clarify
it.22 Even if the maximal loss has an arbitrarily small—but positive—L(g )n

probability, it still affects the riskiness. After all, this maximal loss will
eventually occur, and to avoid bankruptcy the wealth must be sufficiently
large to overcome it. The fact that the probability is small implies only
that it may take a long time to occur. But occur it will!

Interestingly, a similar point has been recently made by Taleb (2005):
highly improbable events that carry a significant impact (called “black
swans”) should not be ignored. One may make money for a very long
time, but if one ignores the very low probability possibilities, then one
will eventually lose everything.

VI. Discussion and Literature

This section is devoted to several pertinent issues and connections to
the existing literature. We start with the recently developed “index of
riskiness” of Aumann and Serrano (2008), continue with matters con-
cerning utility, risk aversion, wealth, and the “calibration” of Rabin
(2000), discuss other measures of riskiness, and conclude with a number
of general comments.

22 Other measures of riskiness, such as that of Aumann and Serrano (2008), are con-
tinuous even when does not converge to .L(g ) L(g)n
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A. Aumann and Serrano’s Index of Riskiness

Aumann and Serrano (2008) have recently developed the economic index
of riskiness, which associates to every gamble a unique numberg � G

as follows.23 Consider the decision maker with constantASR (g) 1 0
(Arrow-Pratt) absolute risk aversion coefficient a (his utility function is
thus24 ) who is indifferent between accepting andu(x) p � exp (�ax)
rejecting g; put . The following equation thus definesASR (g) p 1/a

uniquely:ASR (g)

1
E exp � g p 1. (3)( )AS[ ]R (g)

Aumann and Serrano’s approach is based on a duality axiom, which
essentially asserts that less risk-averse decision makers accept “riskier”
gambles.25 Together with positive homogeneity of degree one, this leads
to the above index .ASR

Comparing this to our approach, we note the following distinctions:

(i) is an index of riskiness, based on comparing the gamblesASR
in terms of their riskiness. Our R is a measure of riskiness, defined
for each gamble separately (see Sec. VI.E.2).

(ii) is based on risk-averse expected-utility decision makers. OurASR
approach completely dispenses with utility functions and risk
aversion, and just compares two situations: bankruptcy versus
no-bankruptcy, or, even better (Sec. IV), bankruptcy versus in-
finite growth, or loss versus no-loss, and so forth.

(iii) is based on the critical level of risk aversion, whereas ourASR
R is based on the critical level of wealth. Moreover, the com-
parison between decision makers in Aumann and Serrano
(2008)—being “more” or “less” risk averse—must hold at all
wealth levels. We thus have an interesting “duality”: looksASR
for the critical risk aversion coefficient regardless of wealth,
whereas R looks for the critical wealth regardless of risk
aversion.

23 This index was used in the technical report of Palacios-Huerta et al. (2004); see
Aumann and Serrano (2008, 810n).

24 This is the class of CARA utility functions; stands for .xexp (x) e
25 For an alternative approach that is based on a simple “riskiness order,” see Hart (2008).
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(iv) Our approach yields a measure R whose unit and normalization
are well defined, whereas Aumann and Serrano are free to
choose any positive multiple of . Moreover, the numberASR

has a clear operational interpretation, which, at this point,R(g)
has not yet been obtained for . In fact, our work originallyASR (g)
started as an attempt to provide such an interpretation for

, but it led to a different measure of riskiness.ASR (g)

The two approaches thus appear quite different in many respects,
both conceptually and practically. Nevertheless, they share many prop-
erties (compare Sec. V above with Sec. V in Aumann and Serrano
2008).26 Moreover, they turn out to yield similar values in many exam-
ples. To see why, rewrite (3) as , and compareASE[1 � exp (�g/R (g))] p 0
it to our equation (1), . Now the two relevantE[log (1 � g/R(g))] p 0
functions, and , are close for small x: their Taylorlog (1 � x) 1 � exp (�x)
series around arex p 0

1 1 12 3 4 …log (1 � x) p x � x � x � x �2 3 4

and

1 1 12 3 4 …1 � exp (�x) p x � x � x � x � .2 6 24

The two series differ only from their third-order terms on; this suggests
that when is small—that is, when the riskiness is large relativeg/R(g)
to the gamble—the two approaches should yield similar answers.

To see this formally, it is convenient to keep the gambles bounded,
from above and from below, and let their riskiness go to infinity (recall
that both R and are homogeneous of degree one); as we will seeASR
below, this is equivalent to letting their expectation go to zero. The
notation means that as .a ∼ b a /b r 1 n r �n n n n

Proposition 4. Let be a sequence of gambles such(g ) O Gn np1,2,…

that there exist and with and for all n.K ! � k 1 0 Fg F ≤ K E[Fg F] ≥ kn n

Then the following three conditions are equivalent:
(i) as .E[g ] r 0 n r �n

(ii) as .R(g ) r � n r �n

(iii) as .ASR (g ) r � n r �n

Moreover, in this case as .ASR(g ) ∼ R (g ) n r �n n

Thus, when the expectation goes to zero, both measures go to infinity;
and if one of them goes to infinity, then the other does so too—and,
moreover, they become approximately equal. Proposition 4 is proved
in the Appendix, Section F. We note here another general relation that

26 The only differences concern continuity and independent gambles.
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has been obtained in Aumann and Serrano (2008):27 for every ,g � G
AS�L(g) ! R (g) � R(g) ! M(g). (4)

At this point one may wonder which riskiness measure or index could
be said to be “better.” Our view is that there is no definite answer. Each
one of them captures certain aspects of riskiness; after all, a whole
distribution is summarized into one number (a “statistic”). Further re-
search should help clarify the differences and tell us when it is appro-
priate to use them.28

B. Utility and Risk Aversion

Consider an expected-utility decision maker with utility function u,
where is the utility of wealth x. The utility function u generates au(x)
strategy as follows: accept the gamble g when the wealth is W ifus { s
and only if by doing so the expected utility will not go down, that is,

accept g at W if and only if E[u(W � g)] ≥ u(W ); (5)

equivalently, the expected utility from accepting g at W is no less than
the utility from rejecting g at W.

A special case is the logarithmic utility (also known as theu(x) p log x
“Bernoulli utility”). The riskiness measure R turns out to be character-
ized by the following property. For every gamble g, the logarithmic utility
decision maker is indifferent between accepting and rejecting g when
his wealth W equals exactly , and he strictly prefers to reject g atR(g)
all and to accept g at all ; this follows from (1) andW ! R(g) W 1 R(g)
lemma 1 in the Appendix (Sec. A) since

E[log (1 � g/R(g))] p E[log (R(g) � g)] � log (R(g)).

Therefore, the condition (2) of rejecting a gamble when its riskiness is
higher than the current wealth, that is, when , can be restatedW ! R(g)
as follows: reject any gamble that the logarithmic utility rejects.

The logarithmic utility is characterized by a constant relative risk aversion
coefficient of 1 (i.e., for all ). More gen-′′ ′g (x) :p �xu (x)/u (x) p 1 x 1 0u

erally, consider the class CRRA of utility functions that have a constant
relative risk aversion coefficient, that is, for all ; theg (x) p g 1 0 x 1 0u

corresponding utility functions are for and1�gu (x) p x /(1 � g) g ( 1g

for . It can be checked that these are exactly theu (x) p log x g p 11

utility functions for which the resulting strategy turns out to be aus

27 Aumann and Serrano (2008) show that a decision maker with log utility accepts g at
all and rejects g at all , and so (see Sec. VI.B below)AS ASW 1 R (g) � L(g) W ! R (g) � M(g)

must lie between these two bounds.R(g)
28 For a similar point, which one is “better”—the mean or the median? (For an illu-

minating discussion on “multiple solutions,” see Aumann 1985, esp. Sec. 4.)
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simple strategy (i.e., with a critical-wealth function that is homogeneous;
use for instance corollary 3 and lemma 4 in Sec. X.A of Aumann and
Serrano 2008). Since a higher risk aversion means that more gambles
are rejected, our main result (see corollary 1) yields the following: no-
bankruptcy is guaranteed for a CRRA utility if and only if the relative riskug

aversion coefficient g satisfies .29g ≥ 1
Given a general utility function u (which is not necessarily CRRA, and

therefore the resulting strategy is not necessarily simple), assume forus
simplicity that the relative risk aversion coefficient at 0 is well defined;
that is, the limit exists. Then proposition 11 in theg (0) :p lim g (x)�u xr0 u

Appendix (Sec. G) yields the following result: guarantees no-g (0) 1 1u

bankruptcy, and guaranteed no-bankruptcy implies that .30 Itg (0) ≥ 1u

is interesting how the conclusion of a relative risk aversion coefficient
of at least 1 has been obtained from the simple and basic requirement
of no-bankruptcy or any of the alternative criteria in Section IV.31

C. Wealth and Calibration

We come now to the issue of what is meant by “wealth.” Our basic setup
assumes that the decision maker wants to avoid bankruptcy (i.e., W rt

). This can be easily modified to accommodate any other minimal level0
of wealth that must be guaranteed: just add throughout. Thus,W W
rejecting g at W when guarantees that for all tW ! W � R(g) W ≥ Wt

and (this follows from proposition 6 in Sec. AP[lim W p W ] p 0tr� t

of the Appendix).
If, say, is the wealth that is needed and earmarked for purposesW

such as living expenses, housing, consumption, and so on, then R(g)
should be viewed as the least “reserve wealth” that is required to cover
the possible losses without going bankrupt, or, more generally, without
going below the minimal wealth level . That is, is not the totalW R(g)
wealth needed, but only the additional amount above . Therefore, ifW
that part of the wealth that is designated for no purpose other than
taking gambles—call it “gambling wealth” or “risky investment wealth”—
is below , then g must be rejected.R(g)

This brings us to the “calibration” of Rabin (2000). Take a risk-averse

29 It is interesting how absolute risk aversion and CARA utilities have come out of the
Aumann and Serrano (2008) approach, and relative risk aversion and CRRA utilities out
of ours—in each case, as a result and not an assumption.

30 The knife-edge case of can go either way: consider and1g (0) p 1 u (x) p log xu

2 �u (x) p exp (� � log x)

for small x.
31 Many—though not all—empirical studies indicate relative risk aversion coefficients

larger than 1 (see, e.g., Palacios-Huerta and Serrano 2006). Perhaps (and take this cum
grano salis) agents with a coefficient less than 1 may already be bankrupt and thus not
part of the studies.
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expected-utility decision maker and consider, for example, the following
two gambles: the gamble g in which he gains $105 or loses $100 with
equal probabilities, and the gamble h in which he gains $5.5 million or
loses $10,000 with equal probabilities. Rabin proves that: if (i) g is re-
jected at all wealth levels , then (ii) h must be rejected atW ! $300,000
wealth .W p $290,000

If one were to interpret the wealth W as gambling wealth, then our
result suggests that the premise (i) that one rejects g at all W !

is not plausible, since is only $2,100. If, on the other$300,000 R(g)
hand, wealth were to be interpreted as total wealth, then, as we saw
above, (i) is consistent with wanting to preserve a minimal wealth level

of at least . If that is the case, then aW $297,900 p $300,000 � $2,100
wealth of $290,000 is below the minimal level , and so it makes senseW
to reject h there.

Thus, if wealth in the Rabin setup is gambling wealth, then the as-
sumption (i) is not reasonable and so it does not matter whether the
conclusion (ii) is reasonable or not.32 And if it is total wealth, then both
(i) and (ii) are reasonable, because such behavior is consistent with
wanting to keep a certain minimal wealth level . In eitherW ≥ $297,000
case, our setup suggests that there is nothing “implausible” here, as
Rabin argues there is (and which leads him to cast doubts on the use-
fulness and appropriateness of expected utility theory33).34

D. Other Measures of Riskiness

Risk is a central issue, and various measures of riskiness have been
proposed (see the survey of Machina and Rothschild 2008 and Sec. 7
in Aumann and Serrano 2008). We have already discussed in Section
VI.A the recent index of Aumann and Serrano (2008), which is the
closest to ours.

Most of the riskiness measures in the literature (and in practice) turn
out to be nonmonotonic with respect to first-order stochastic domi-
nance, which, as has been repeatedly pointed out by various authors,
is a very reasonable—if not necessary—requirement. Indeed, if gains
increase and losses decrease, how can the riskiness not decrease? Nev-
ertheless, riskiness measures, particularly those based on the variance
or other measures of “dispersion” of the gamble (and also “Value-at-

32 Palacios-Huerta and Serrano (2006) argue that (i) is unreasonable from an empirical
point of view (their paper led to the theoretical work of Aumann and Serrano 2008).

33 Safra and Segal (2008) show that similar issues arise in many non–expected utility
models as well. Rubinstein (2001) makes the point that expected utility need not be applied
to final wealth, and there may be inconsistencies between the preferences at different
wealth levels.

34 Of course, this applies provided that there is no “friction,” such as hidden costs (e.g.,
in collecting the prizes) or “cheating” in the realization of the gambles.
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Risk” [VaR];35 see Sec. VI.E.1), do not satisfy this monotonicity condi-
tion.

Artzner et al. (1999) have proposed the notion of a “coherent measure
of risk,” which is characterized by four axioms: “translation invariance”
(T), “subadditivity” (S), “positive homogeneity” (PH), and “monotonic-
ity” (M). Our measure R satisfies the last three axioms: (PH) and (S)
are the same as (iii) and (iv) in proposition 1, and (M), which is weak
monotonicity with respect to first-order stochastic dominance, follows
from proposition 2. However, R does not satisfy (T), which requires that

for every constant c (assuming no discounting; seeR(g � c) p R(g) � c
Sec. VI.E.7); that is, adding the same number c to all outcomes of a
gamble decreases the riskiness by exactly c. To see why this requirement
is not appropriate in our setup, take for example the gamble g of Section
I in which one gains 120 or loses 100 with equal probabilities; its riskiness
is . Now add to all payoffs; the new gambleR(g) p 600 c p 100 g �

has no losses, and so its riskiness should be 0, not100 500 p 600 �
.36 See also Section VI.E.1 below.100

E. General Comments

1. Universal and objective measure. Our approach looks for a “uni-
versal” and “objective” measure of riskiness. First, it abstracts away from
the goals and the preference order of specific decision makers (and so,
a fortiori, from utility functions, risk aversion, and so on). The only
property that is assumed is that no-bankruptcy is preferred to bank-
ruptcy; or, in the shares setup, that infinite growth is preferred to bank-
ruptcy or no-loss to loss.37 Second, we make no assumptions on the
sequence of gambles the decision maker will face. And third, our mea-
sure does not depend on any ad hoc parameters that need to be specified
(as is the case, e.g., with the measure Value-at-Risk, which depends on
a “confidence level” ).a � (0, 1)

Of course, if additional specifications are available—such as how the
sequence of gambles is generated—then a different measure may result.
The measure that we propose here may be viewed as an idealized
benchmark.

2. Single gamble. While our model allows arbitrary sequences of gam-
bles, the analysis can be carried out separately for any single gamble g
(together with its multiples); see the example in the shares setup of

35 Increasing one of the possible gains leaves VaR unchanged.
36 Formally, is not a gamble; so take instead, say, , where one gainsg � 100 g � 99.99

219.99 or loses 0.01; its riskiness can hardly be 500.01. The index of Aumann and Serrano
(2008) likewise satisfies (S), (PH), and (M), but not (T).

37 In particular, the fact that gambles with positive expectation are sometimes rejected—
i.e., “risk aversion”—is a consequence of our model, not an assumption.
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Section IV and proposition 7 in the Appendix, Section A. The riskiness
of a gamble g is thus determined by considering g only; no com-R(g)

parisons with other gambles are needed.
3. Returns. One may restate our model in terms of returns: accepting

a gamble g at wealth W yields relative gross returns X p (W � g)/W p
. We will say that X has B-returns if , and that it has1 � g/W E[log X] ! 0

G-returns if (B stands for “Bad” or “Bankruptcy,” and G forE[log X ] 1 0
“Good” or “Growth”):38 a sequence of i.i.d. B-returns leads to bankruptcy,
and of G-returns to infinite wealth (a.s.). Now, accepting g at W yields
B-returns if and only if , and G-returns if and only ifW ! R(g) W 1

(see lemma 1 in the Appendix, Sec. A), and so is the criticalR(g) R(g)
wealth level below which the returns become B-returns.

4. Acceptance. As pointed out in Section III, our approach tells us
when we must reject gambles—namely, when their riskiness exceeds the
available wealth—but it does not say when to accept gambles. Any strat-
egy satisfying condition (2) guarantees no-bankruptcy (see proposition
6 in the Appendix, Sec. A). Therefore, additional criteria are needed
to decide when to accept a gamble. For example, use a utility function
and decide according to condition (5) in Section VI.B; or see point 5
below.

5. Maximal growth rate. In the shares setup, one may choose that
proportion of the gamble that maximizes the expected growth rate
(rather than just guarantees that it is at least 1, as the riskiness measure
does). This yields a number , where is max-K { K(g) E[log (1 � g/K)]
imal over ; equivalently (taking the derivative), is the uniqueK 1 0 K(g)
positive solution of the equation ; for example,E[g/(1 � g/K(g))] p 0
when g takes the values 105 and �100 with equal probabilities,

and .39 There is an extensive literature onK(g) p 4,200 R(g) p 2,100
the maximal growth rate; see, for example, Kelly (1956), Samuelson
(1979), Cover and Thomas (1991, chap. 6), and Algoet (1992). While
the log function appears there too, our approach is different. We do
not ask who will win and get more than everyone else (see, e.g., Blume
and Easley 1992), but rather who will not go bankrupt and will get good
returns. It is like the difference between “optimizing” and “satisficing.”

6. Nonhomogeneous strategies. A simple strategy is based on a riskiness-
like function and is thus homogeneous of degree one. This raises the
question of what happens in the case of general nonhomogeneous strat-
egies, where the critical-wealth function may be arbitrary.Q : G r [0, �]

38 The returns in the knife-edge case may be called C-returns (C for “Critical”E[log X] p 0
or “Constant”).

39 For - gambles g it is easy to prove that ; of course,1/2 1/2 K(g) p 2R(g) K(g) 1 R(g)
holds for every gamble (see lemma 1 and fig. A1b in the Appendix: is theg � G K(g)
point at which is maximal). It may be checked that is that wealth level at which aw K(g)
CRRA utility with is indifferent between accepting and rejecting g.g p 2
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In the basic no-bankruptcy setup of Section III, for instance, condition
(2) that for all g is sufficient to guarantee no-bankruptcy,Q(g) ≥ R(g)
whether Q is homogeneous or not (see proposition 6 in the Appendix,
Sec. A). However, this condition is no longer necessary: a nonhomo-
geneous Q allows one to behave differently depending on whether the
wealth is large or small. It turns out that no-bankruptcy is guaranteed
if and only if, roughly speaking, condition (2) holds when the wealth
is small—provided that immediate ruin is always avoided and so the
wealth remains always positive (i.e., for all g). See SectionQ(g) 1 L(g)
G in the Appendix.

7. Limited liability. Our approach yields infinite riskiness when the
losses are unbounded (since ; see also the discussion in Sec.R(g) 1 L(g)
V.B). This may explain the need to bound the losses, that is, have limited
liability. It is interesting that, historically, the introduction of limited-
liability contracts did in fact induce many people to invest who would
otherwise have been hesitant to do so.

8. Risk-free asset and discounting. We have assumed no discounting
over time and a risk-free rate of return . Allowing for discountingr p 1f

and an different from 1 can, however, be easily accommodated, eitherrf

directly or by interpreting future outcomes as being expressed in pre-
sent-value terms.

9. Axiomatic approach. It would be useful to characterize the riskiness
measure R by a number of reasonable axioms; this may also help clarify
the differences between R and . See Foster and Hart (2008).ASR

10. Riskiness instead of standard deviation and VaR. As pointed out in
Sections V.A and VI.D, commonly used measures of risk—such as the
standard deviation j and VaR—may be problematic. We propose the
use of R instead.

Indeed, R shares many good properties with j (see proposition 1);
but it has the added advantage of being monotonic with respect to
stochastic dominance (see proposition 2). For instance, one could use
R to determine “efficient portfolios” (Markowitz 1952, 1959; Sharpe
1964): rather than maximize the expected return for a fixed standard
deviation, maximize the expected return for a fixed riskiness. More-
over, one may try to use in place of the Sharpe (1966) ratioE[g]/R(g)

.E[g]/j[g]
The measures VaR are used for determining bank reserves. Since our

measure R may be viewed as the minimum “reserve” needed to guar-
antee no-bankruptcy, it is a natural candidate to apply in this setup.

All this of course requires additional study.
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Appendix

Proofs

The proofs are collected in this Appendix, together with a number of additional
results.

A. Proof of Theorem 1

We prove here the main result, theorem 1, together with a number of auxiliary
results (in particular lemma 1) and extensions (propositions 6 and 7). We start
by showing that is well defined by equation (1).R(g)

Lemma 1. For every there exists a unique number such thatg � G R 1 0
. Moreover: (the maximal loss of g);E[log (1 � g/R)] p 0 R 1 L { L(g)

if and only if ; and if and only ifE[log (1 � g/r)] ! 0 L ! r ! R E[log (1 � g/r)] 1 0
.r 1 R

Proof. Let

m

f(l) :p E[log (1 � lg)] p p log (1 � lx )� i i
ip1

for . It is straightforward to verify that0 ≤ l ! 1/L

f(0) p 0;

lim f(l) p ��;
�lr(1/L)

p xi i′f (l) p ;�
1 � lxi i

′f (0) p p x p E[g] 1 0;� i i
i

2p xi i′′f (l) p � ! 0� 2(1 � lx )i i

for every . Therefore, the function f is a strictly concave functionl � [0, 1/L)
that starts at with a positive slope ( ) and goes to �� as l′f(0) p 0 f (0) 1 0
increases to . Hence (see fig. A1a) there exists a unique such1/L 0 ! l* ! 1/L
that , and moreover for and forf(l*) p 0 f(l) 1 0 0 ! l ! l* f(l) ! 0 l* ! l !

. Now let . QED1/L R p 1/l*
Note that the function is not monotonic in r since gw(r) :p E[log (1 � g/r)]

has negative values (see fig. A1b).
From lemma 1 it follows that R is positively homogeneous of degree one:
Lemma 2. for every and .R(lg) p lR(g) g � G l 1 0
Proof. , and so0 p E[log (1 � g/R(g))] p E[log (1 � (lg)/(lR(g)))] lR(g) p

since equation (1) determines R uniquely. QEDR(lg)
We recall a result on martingales:
Proposition 5. Let be a martingale defined on a probability space(X )t tp1,2,…

and adapted to the increasing sequence of j-fields . Assume(Q, F, P) (F )t tp1,2,…

that has bounded increments; that is, there exists a finite K such that(X )t
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Fig. A1.—The functions and (see lemma 1)f(l) w(r)

for all . Then for almost every either: (i)FX � X F ≤ K t ≥ 1 q � Q lim X (q)t�1 t tr� t

exists and is finite; or (ii) and . More-lim inf X (q) p �� lim sup X (q) p ��tr� t tr� t

over, define the random variable ; then (i)� 2A :p � E[(X � X ) FF ] � [0, �]� t�1 t ttp1

holds for almost every with , and (ii) holds for almost everyq � Q A (q) ! ��

with .q � Q A (q) p ��

Proof. Follows from proposition VII-3-9 in Neveu (1975). QED
Thus, almost surely either the sequence of values of the martingale converges

or it oscillates infinitely often between arbitrarily large and arbitrarily small
values. The term may be interpreted as the “total one-step conditional var-A�

iance.”
Theorem 1 will follow from the next two propositions, which provide slightly

stronger results.
Proposition 6. If a strategy s satisfies condition (2), then s guarantees no-

bankruptcy.
We emphasize that this applies to any strategy, not only to simple strategies;

the function Q may be nonhomogeneous, or there may not be a critical-wealth
function at all.

Proof of proposition 6. Consider a process G generated by a finite set G O0

. When is accepted at , we have , and soG g W W ≥ R(g ) 1 L(g ) W ≥ W �t t t t t t�1 t

; by induction, it follows that for every t. PutL(g ) 1 0 W 1 0t t

Y :p logW � logW , (A1)t t�1 t

and let be the decision at time t; the history before isd d f :p (W , g , d ;t t t�1 1 1 1

. We have ; indeed, when is… ; W , g , d ; W , g ) E[YFf ] ≥ 0 Y p 0 gt�1 t�1 t�1 t t t t�1 t t

rejected, and when it is accepted,Y p log (W � g ) � logW p log (1 � g /W )t t t t t t

and then by (2) and lemma 1.E[YFf ] p E[log (1 � g /W )Ff ] ≥ 0t t�1 t t t�1

If is accepted, then , which implies thatg W ≥ R(g ) 1 � g /W ≤ 1 �t t t t t
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and . Therefore,M(g )/R(g ) ! � 1 � g /W ≥ 1 � L(g )/R(g ) 1 0t t t t t t

g M(g)tY p log 1 � ≤ sup log 1 �t ( ) ( )W R(g)g�coneGt 0

M(g)
p max log 1 � ! �( )R(g)g�G0

and, similarly, (since is finite and theY ≥ min log (1 � L(g)/R(g)) 1 �� Gt g�G 00

functions M, L, and R are homogeneous of degree one); the random variables
are thus uniformly bounded.Yt

Put

T

X :p (Y � E[YFf ]); (A2)�T t t t�1
tp1

then is a martingale with bounded increments. Recalling that(X )T Tp1,2,…

, we haveE[YFf ] ≥ 0t t�1

T T

X ≤ Y p (logW � logW ) p logW � logW .� �T t t�1 t T�1 1
tp1 tp1

Now bankruptcy means , and so ; but the event { rlogW r �� X r �� XT T T

��} has probability zero by proposition 5 (it is disjoint from both (i) and (ii)
there), and so bankruptcy occurs with probability zero. QED

Proposition 7. Let be a simple strategy with for some˜ ˜ ˜s Q(g) ! R(g) g �Q

. Then there exists a process such that (a.s.); moreover,G G p (g ) lim W p 0t tr� t

all the are multiples of .˜g gt

Thus there is bankruptcy with probability one, not just with positive probability.
Proof of proposition 7. Let ; we have (otherwise there is˜q :p Q(g) q 1 L(g)

immediate bankruptcy starting with and accepting ; indeed, once˜W p q g p g1 1

the wealth becomes zero, it remains so forever by the no-borrowing condition
, since no gambles may be accepted). Therefore, , and so˜ ˜W ≥ 0 L(g) ! q ! R(g)t

by lemma 1. Let be a sequence of i.i.d. gambles˜ ˜m :p E[log (1 � g/q)] ! 0 (g )t tp1,2,…

with each one having the same distribution as , and take with˜ ˜g g p l g l pt t t t

. Now , and so is accepted at . Therefore,˜W /q Q(g ) p (W /q)Q(g) p W g Wt t t t t t

is an i.i.d. sequence, and so, as ,˜Y p log (1 � g /W ) p log (1 � g /Q) T r �t t t t

T1 1 1
˜(logW � logW ) p Y r E log 1 � g p m ! 0�T�1 1 t ( )[ ]T T qtp1

(a.s.), by the Strong Law of Large Numbers. Therefore, , that is,logW r ��T

(a.s.). QEDW r 0T

B. Proof of Theorem 2

The result in the shares setup will follow from the following proposition, which
gives a more precise result.

Proposition 8. Let be a simple shares strategy, and let G be a processsQ

generated by a finite . Then:G0
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(1) If for every , then a.s.Q (g) 1 R(g) g � G lim W p �0 tr� t

(≥) If for every , then a.s.Q(g) ≥ R(g) g � G lim sup W p �0 tr� t

(p) If for every , then andQ(g) p R(g) g � G lim sup W p �0 tr� t

a.s.lim inf W p 0tr� t

(≤) If for every , then a.s.Q(g) ≤ R(g) g � G lim inf W p 00 tr� t

(!) If for every , then a.s.Q(g) ! R(g) g � G lim W p 00 tr� t

Proof. Define and as in the proof of proposition 6 above, by (A1) andY Xt T

(A2), respectively. Since the gamble taken at time t is , wherea g a pt t t

, we haveW /Q(g )t t

a 1tY p log 1 � g p log 1 � g .t t t( ) ( )W Q(g )t t

Next,

1
lim X p 0 (A3)TT

and

lim supX p � and lim infX p �� (A4)T T

a.s. as . Indeed, the random variables are uniformly bounded (sinceT r � Yt

each g has finitely many values and is finite), and so (A3) follows from theG0

Strong Law of Large Numbers for Dependent Random Variables (see Loève
1978, vol. 2, theorem 32.1.E). As for (A4), it follows from proposition 5 applied
to the martingale , since for every history ,X fT t�1

12E[(X � X ) Ff ] ≥ min Var log 1 � g p: d 1 0t t�1 t�1 ( )[ ]Q(g)g�G0

(we have used the homogeneity of Q and the finiteness of ; Var denotesG0

variance), and so .A p ��

We can now complete the proof in the five cases.
(1) The assumption that for every implies by lemma 1 thatQ(g) 1 R(g) g � G 0

1 ′E[YFf ] ≥ min E log 1 � g p: d 1 0,t t�1 ( )[ ]Q(g)g�G0

and so, as (a.s.),T r �

T1 1
lim inf (logW � logW ) p lim inf Y�T�1 1 tT T tp1

1 ′ ′≥ lim X � d p d 1 0TT

(recall (A3)); therefore, .limW p �T
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(!) Similar to the proof of (1), using

g ′′E[YFf ] ≤ maxE log 1 � p: d ! 0.t t�1 ( )[ ]Q(g)g�G0

(≥) Here we have , and soE[YFf ] ≥ 0t t�1

T

lim sup (logW � logW ) p lim sup Y ≥ lim supX p ��T�1 1 t T
tp1

by (A4).
(≤) Similar to the proof of (≥), using now .E[YFf ] ≤ 0t t�1

(p) Combine (≥) and (≤). QED
Proof of theorem 2. Follows from proposition 8: (1) and (≤) yield (i) (if

, then take G to be an i.i.d. sequence with all having the same˜ ˜ ˜ ˜Q(g) ≤ R(g) (g ) gt t

distribution as ), and similarly (≥) and (!) yield (ii). QEDg̃

C. Proof of Proposition 1

We prove here the basic properties of the riskiness measure, followed by an
additional result on sequences of i.i.d. gambles.

Proof of proposition 1. (i), (ii), and (iii) are immediate from (1) and lemmas
1 and 2.

(iv) Let and , and put . Since′ ′r :p R(g) r :p R(h) l :p r/(r � r ) � (0, 1)
, the concavity of the log function gives′ ′(g � h)/(r � r ) p l(g/r) � (1 � l)(h/r )

g � h g h
E log 1 � ≥ lE log 1 � � (1 � l)E log 1 � p 0,( ) ( ) ( )′ ′[ ] [ ] [ ]r � r r r

and so by lemma 1.′r � r ≤ R(g � h)
(v) follows from (ii) and (iv).
(vi) Put ; thenh :p l ∗ g

h g
E log 1 � p lE log 1 � � (1 � l) log (1 � 0) p 0,( ) ( )[ ] [ ]R(g) R(g)

and so .R(h) p R(g)
(vii) The second inequality is (iv) (it is strict since only constant random

variables can be both independent and equal [or proportional], and gambles
in are never constant). To prove the first inequality, recall the concave functionG

of the proof of lemma 1 (see fig. A1a): it decreases atf(l) :p E[log (1 � lg)]
its second root , and so for ,′l p 1/R(g) f (l) p E[g/(1 � lg)] ! 0 l p 1/R(g)
and thus for all .l ≥ 1/R(g)

Without loss of generality assume that . Put ; thenR(g) ≤ R(h) r :p 1/R(g)
and, as we have seen above,E[log (1 � rg)] p 0 ≥ E[log (1 � rh)]

g h
E ! 0 and E ! 0 (A5)[ ] [ ]1 � rg 1 � rh



operational measure of riskiness CHECKED 25

Thursday Oct 01 2009 02:07 PM JPE v117n5 2008471 VLONGAWA

(since and ). Nowr p 1/R(g) r ≥ 1/R(h)

E[log (1 � r(g � h))] p E[log (1 � rg)] � E[log (1 � rh)]

2r gh
� E log 1 � .( )[ ](1 � rg)(1 � rh)

The first term vanishes, the second is ≤ 0, and for the third we get

2 2r gh r gh
E log 1 � ≤ E �( )[ ] [ ](1 � rg)(1 � rh) (1 � rg)(1 � rh)

g h2p �r E E ! 0[ ] [ ]1 � rg 1 � rh

(we have used , the independence of g and h, and (A5)). Al-log (1 � x) ≤ �x
together , and so (by lemma 1), provingE[log (1 � r(g � h))] ! 0 1/r ! R(g � h)
our claim (recall that . QED1/r p R(g) p min {R(g), R(h)})

Let be a sequence of i.i.d. gambles; then (vii) implies thatg , g , … , g , …1 2 n

. In fact, we can get a better estimate.…R(g ) ! R(g � g � � g ) ! nR(g )1 1 2 n 1

Proposition 9. Let be a sequence of i.i.d. gambles. Then�(g ) O Gn np1

…max {R(g ), nL(g )} ! R(g � g � � g ) ! R(g ) � nL(g ) � M(g ).1 1 1 2 n 1 1 1

Moreover, , where .…¯ ¯ ¯lim R(g ) p L(g ) p L(g ) g :p (g � g � � g )/ntr� n n 1 n 1 2 n

Proof. Let . The left-hand-side inequality follows…h :p g � g � � gn 1 2 n

from proposition 1 (vii) and (ii); for the right-hand-side inequality, use (4),
(see Aumann and Serrano 2008, Sec. V.H), and again (4):AS ASR (h ) p R (g )n 1

AS ASR(h ) ! R (h ) � L(h ) p R (g ) � nL(g ) ! R(g ) � M(g ) � nL(g ).n n n 1 1 1 1 1

The “moreover” statement follows from the homogeneity of R. QED
For small n, if is large relative to , then is close…R(g ) g R(g � g � � g )1 1 1 2 n

to (compare Sec. V.H in Aumann and Serrano 2008). For large n, theR(g )1

average gamble converges to the positive constant by the Law of Largeḡ E[g ]n 1

Numbers, and so its riskiness decreases; however, as the maximal loss stays con-
stant ( ), the riskiness of converges to it (compare Sec. V.B).¯ ¯L(g ) p L(g ) gn 1 n

D. Proof of Proposition 2

We prove here that R is monotonic with respect to stochastic dominance.
Proof of proposition 2. Let and . If orr :p R(g) u (x) :p log (1 � x/r ) g SD h0 0 0 1

, then since is strictly monotonic and strictly con-g SD h E[u (g)] 1 E[u (h)] u2 0 0 0

cave. But by (1), and so , which implies thatE[u (g)] p 0 E[log (1 � h/r )] ! 00 0

by lemma 1. QEDR(g) p r ! R(h)0

E. Proof of Proposition 3

We will prove a slightly more precise continuity result that implies proposition
3.
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Proposition 10. Let be a sequence of gambles satisfying(g ) O Gn np1,2,…

. If and as , thenDsup M(g ) ! � g rg � G L(g ) r L n r � R(g ) rn≥1 n n n 0 n

as .max {R(g), L } n r �0

Thus except when the limit of the maximal lossesR(g ) r R(g) L L(g )n 0 n

exceeds , in which case .R(g) R(g ) r Ln 0

Proof. Denote . Now impliesDR :p max {R(g), L } g rg lim inf L(g ) ≥0 0 n n n

since for every (seeL(g) lim inf P[g ! �L(g) � �] ≥ P[g ! �L(g) � �] 1 0 � 1 0n n

Billingsley 1968, theorem 2.1(iv)), and thus . Let r be a limit point ofL ≥ L(g)0

the sequence , possibly ��; without loss of generality, assume thatR(g )n

. Since , it follows thatR(g ) r r R(g ) 1 L(g ) r Ln n n 0

r ≥ L , (A6)0

and so either r is finite or .r p �
We will now show that . Indeed, when r is finite (if , there isr ≥ R(g) r p �

nothing to prove here), let and ; then for all large enough20 ! � ! 1 q :p (1 � �) r
n we have

R(g ) ! q (A7)n

and

1
L(g ) ! (1 � �)L ≤ (1 � �)r p q (A8)n 0 1 � �

(the second inequality by (A6)). Hence (by lemma 1 andE[log (1 � g /q)] 1 0n

(A7)), and is uniformly bounded: from above bylog (1 � g /q) log (1 �n

, and from below by sincesup M(g )/q) log (�/(1 � �)) g /q ≥ �L(g )/q 1n n n n

by (A8). Therefore,�1/(1 � �) E[log (1 � g/q)] p lim E[log (1 � g /q)] ≥ 0n n

(since ), which implies that (again by lemma 1). NowD 2g rg q p (1 � �) r ≥ R(g)n

was arbitrary, and so we got� 1 0

r ≥ R(g). (A9)

Now (A6) and (A9) imply that . If , then take smallr ≥ R r 1 R 0 ! � ! 10 0

enough so that . For all large enough n we then have2q :p (1 � �) R ! r0

q ! R(g ) (A10)n

and

1
L(g ) ! (1 � �)L ≤ (1 � �)R p q. (A11)n 0 0 1 � �

Hence (by lemma 1 and (A10)), and is againE[log (1 � g /q)] ! 0 log (1 � g /q)n n

uniformly bounded (the lower bound by (A11)). Therefore, E[log (1 �
(since ), contradictingD 2g/q)] p lim E[log (1 � g /q)] ≤ 0 g rg q p (1 � �) R ≥n n n 0

(by lemma 1 and ).2(1 � �) R(g) 1 R(g) R(g) 1 L(g) 1 0
Therefore, for every limit point of , or . QEDr p R R(g ) R(g ) r R0 n n 0

Proof of proposition 3. If , then ; apply prop-L p L(g) max {R(g), L } p R(g)0 0

osition 10. QED
To see why the values need to be uniformly bounded from above (i.e.,

), let take the values , 3, and with probabilitiesn�1sup M(g ) ! � g �3/4 2 � 1n≥1 n n
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, , and , respectively, and let g take the values(3/4)(1 � 1/n) (1/4)(1 � 1/n) 1/n
and 3 with probabilities and . Then andD�3/4 3/4 1/4 g rg L(g ) p L(g) pn n

, but and .�3/4 M(g ) r � R(g ) p 1 ( 5.72 p R(g)n n

F. Proof of Proposition 4

We prove the result connecting the measures of riskiness.
Proof of proposition 4. Statement (4) yields the equivalence of (ii) and (iii)

and the “moreover” statement.
(ii) implies (i): Let . Using as2 2r :p R(g ) r � log (1 � x) p x � x /2 � o(x )n n

for each value of (all these values are uniformly bounded) and thenx r 0 g /rn n

taking expectation yields

2 2 20 p E[log (1 � g /r )] p E[g ]/r � E[g ]/(2r ) � o(1/r ).n n n n n n n

Multiplying by gives , and thus (since2 2r r E[g ] � E[g ]/2 r 0 E[g ] r 0 r r �n n n n n n

and the are bounded), that is, (i).2E[g ]n

(i) implies (ii): Assume that . For every , letE[g ] r 0 0 ! d ! 1 q p (1 �n n

; then and2d)E[g ]/(2E[g ]) q r �n n n

21 E[g ] 1nq E log 1 � g p E[g ] � � on n n( ) ( )[ ]q 2q qn n n

d 1
p � E[g ] � o .n ( )1 � d qn

Therefore, for all large enough n we have , and thusE[log (1 � g /q )] ! 0n n

. QEDR(g ) 1 q r �n n

Remark. One may define another measure on gambles: 0R (g) p
for every . It is easy to see that if and only if (i)–2 0E[g ]/(2E[g]) g � G R (g) r �

(iii) hold, and then as . However, does not0 AS 0R (g) ∼ R(g ) ∼ R (g ) n r � Rn n

satisfy monotonicity.40

G. Nonhomogeneous Strategies

As discussed in Section VI.E.6, we take the basic setup of Section III and consider
strategies with arbitrary critical-wealth functions that are nots Q : G r [0, �]Q

necessarily homogeneous of degree one. To avoid inessential technical issues,
we make a mild regularity assumption: a strategy is called regular if the limitsQ

exists for every (see remark 2 below for generalQ (g) :p lim Q(lg)/l g � G�1 lr0

strategies).41 The result is
Proposition 11. Let be a regular strategy with for alls { s Q(g) 1 L(g)Q

. Then s guarantees no-bankruptcy if for every , andg � G Q (g) 1 R(g) g � G1

only if for every .Q (g) ≥ R(g) g � G1

40 Let g take the values 500 and �100 with equal probabilities, and h take the values
300 and �100 with equal probabilities; then , but .0 0g SD h R (g) p 325 1 250 p R (h)1

41 Note that is by definition positively homogeneous of degree one.Q 1



CHECKED 28 journal of political economy

Thursday Oct 01 2009 02:07 PM JPE v117n5 2008471 VLONGAWA

Thus, for nonhomogeneous strategies, one needs to consider only “small”
gambles (i.e., with ); but, again, provides the critical threshold.lg l r 0 R(g)

Proof of proposition 11. We start by showing that for everyQ (g) 1 R(g) g �1

implies that for every finite set of gambles there exists such thatG G O G � 1 00

Q(g) ≥ min {R(g), �} (A12)

for every . Indeed, otherwise we have sequences and�g � cone G � r 0 g �0 n n

with for every n. Since is finite, without losscone G Q(g ) ! min {R(g ), � } G0 n n n 0

of generality we can take all to be multiples of the same , sayg g � G g pn 0 0 n

. Now since (the second inequalityl g l r 0 � 1 Q(g ) 1 L(g ) p l L(g ) 1 0n 0 n n n n n 0

since for every g); also (since RQ(g) 1 L(g) Q(l g )/l ! R(l g )/l p R(g )n 0 n n 0 n 0

is homogeneous of degree one by lemma 2), and so , contra-Q (g ) ≤ R(g )1 0 0

dicting our assumption.
Assume for all g. Given a process G generated by a finite setQ (g) 1 R(g)1

, fix that satisfies (A12). Let and define if′G O G � 1 0 Z :p W /W Z :p Z0 t t�1 t t t

and otherwise. Now implies that (indeed,T′ ′ ′W ! � Z :p 1 W r 0 W :p � Z r 0t t T T ttp1

let be such that for all ; then for all′ ′T W ! � T ≥ T W p [W /W ]W T ≥ T0 T 0 T T T T 00 0

and so too). We proceed as in the proof of the first part of theorem 1,′W r 0T

but with , to obtain , and thus .′ ′Y :p logZ P[W r 0] p 0 P[W r 0] p 0t t T T

Conversely, assume that there is with . Let q be such that˜ ˜ ˜g � G Q (g) ! R(g)1

; then there exists such that for all we have˜ ˜ ˜Q (g) ! q ! R(g) d 1 0 l ! d Q(lg) !1

, and thus is accepted at lq. Equivalently, is accepted at W for all˜ ˜lq lg (W/q)g
. We now proceed as in the proof of proposition 7. Let be an i.i.d.˜W ! dq gt

sequence with having the same distribution as for every t; let be˜ ˜g g G p (g )t t

the process with for every t; put .T T˜ ˜g p (W /q)g U :p � Y p � log (1 � g /q)t t t T t ttp1 tp1

Then , and so˜U /T r m :p E[log (1 � g/q)] ! 0T

U r �� (A13)T

a.s. as .T r �
This does not yield bankruptcy, however, since the wealth may go aboveWT

dq, where we have no control over the decisions, and then needlog (W /W )T�1 T

no longer equal . What we will thus show is that the probability of that hap-YT

pening is strictly less than one, and so bankruptcy indeed occurs with positive
probability.

First, we claim that there exists large enough such thatK 1 0

P[U ≤ K for all T] 1 0. (A14)T

Indeed, the are i.i.d., with and forY E[Y ] p m ! 0 a ≤ Y ≤ b a p log (1 �t t t

and ; applying the “large deviations” inequality of˜ ˜L(g)/q) b p log (1 � M(g)/q)
Hoeffding (1963, theorem 2) yields

P[U 1 K] p P[U � mT 1 K � FmFT]T T

22(K � FmFT)≤ exp � ! exp (�cT � dK)( )2T(b � a)

for appropriate constants c, (specifically, and2 2d 1 0 c p 2m /(b � a) d p
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). Therefore,24FmF/(b � a)

� exp (�c � dK)
P[U 1 K for some T] ! exp (�cT � dK) p ,�T 1 �exp (�c)Tp1

which can be made ! 1 for an appropriately large K; this proves (A14).
Start with . We claim that if for all T, then is acceptedW ! dq exp (�K) U ≤ K g1 T T

for all T. Indeed, assume by induction that have been accepted;g , g , … , g1 2 T�1

then , and so is also accepted˜W p W exp (U ) ≤ W exp (K) ! dq g p (W /q)gT 1 T�1 1 T T T

(at ). But if is accepted for all T, then for all T; sinceW g W p W exp (U )T T T 1 T�1

a.s. (see (A13)), it follows that a.s. on the eventU r �� W r 0 {U ≤ K forT T T

. Therefore, (see (A14)), and so theall T } P[W r 0] ≥ P[U ≤ K for all T] 1 0T T

process G leads to bankruptcy with positive probability. QED
Remark 1. In the proof we have shown that for all g impliesQ (g) 1 R(g)1

that for every finite set of gambles there exists such thatG O G � 1 0 Q(g) ≥0

for every , or42min {R(g), �} g � cone G0

s rejects g at all W ! R(g) with W ! �. (A15)

Compare (2): the addition here is “ .” Condition (A15) means that theW ! �
policy of rejecting gambles whose riskiness exceeds the wealth (i.e., W ! R(g))
applies only at small wealths (i.e., ; see Section VI.E.6.W ! �)

Remark 2. Slight modifications of the above proof show that for a general
strategy s that need not be regular or have a critical-wealth function (but does
reject g when ), a sufficient condition for guaranteeing no-bankruptcyW ≤ L(g)
is that for every , if then s rejects lg at lW for all small enoughg � G W ! R(g)
l (i.e., there is such that this holds for all ); a necessary condition isd 1 0 l ! d

that for every , if then s rejects lg at lW for arbitrarily small lg � G W ! R(g)
(i.e., for every there is where this holds). If we letd 1 0 l ! d Q (g) :p inf {W 1s

, then for all g is a sufficient0 : s accepts g at W } lim inf Q (lg)/l 1 R(g)�lr0 s

condition; and when s is a threshold strategy (i.e., s accepts g at all ),W 1 Q (g)s

then for all g is a necessary condition.lim sup Q (lg)/l ≥ R(g)�lr0 s
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