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We consider the contribution of parameters to the stochastic complexity. The

stochastic complexity of a class of models is the length of a universal, one-part code

representing this class. It combines the length of the maximum likelihood code with

the parametric complexity, a normalization that acts as a penalty against overfit-

ting. For models with few parameters relative to sample size, k � n, the parametric

complexity is approximately k
2 log n. The accuracy of this approximation, however,

deteriorates as k grows relative to n, as occurs in denoising, data mining, and ma-

chine learning. For these tasks, the contribution of parameters depends upon the

complexity of the model class. Adding a parameter to a model class that already

has many produces a different effect than adding one to a model class that has

few. In denoising, for example, we show that the parametric complexity leads to

an adaptive model selection criterion. We also address the calculation of the para-

metric complexity when the underlying integration is unbounded over the natural

parameter space, as in Gaussian models.
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8.1 Introduction, Terminology, and Notation

Parametric probability distributions pθ provide a rich set of models for data

compression, coding, and prediction. The parameters that distinguish these models

often have clear physical ties to the underlying data, and so provide a comforting

sense of reality and interpretation. The parameters can be linked to arrival rates,

averages of underlying stochastic processes, or effects of exogenous influences that

one seeks to control. When linked to a data-generating mechanism, both the number

and values of the parameters θ take on substantive meaning that guides the choice of

values for these tuning constants. When stripped of this connection and expanded in

number, however, the choice of the best parameterization for pθ becomes an alluring

impediment. Modern computing makes it all too easy to expand the dimension of

θ by adding superfluous parameters that promise much but deliver little. Indeed,

overparameterized models that have been optimized to obtain the closest fit to data

not only obscure any ties to an underlying data-generating mechanism but also

predict poorly. Complex models found by automatic searches through massive data

warehouses – data mining – nonetheless rule the day in modeling many phenomena.

To choose one of these requires an automated criterion, and stochastic complexity

stands out with appeal from many perspectives.

The routine use of stochastic complexity as a criterion to choose among complex

models faces serious hurdles, however. These challenges arise in determining how

to penalize for overparameterized models. Stochastic complexity appeared about

20 years ago [Rissanen 1986] and was found to possess a variety of optimality

properties that spurred its use in hard problems. This optimality, though, lay in

identifying parameters in models whose dimension remains fixed while the number

of data records, n, expands. In data mining, the complexity of a model – reflected

in the number of parameters – grows with the amount of data. The larger the data

warehouse, the larger and more complex the variety of models one considers. If

the dimension of θ grows with n, the standard asymptotic heuristics for stochastic

complexity no longer obtain. For example, the familiar assessment of 1
2 log n per

parameter no longer holds. Also, to make the procedure workable (in particular, to

bound a key normalization), various artificial constraints have to be placed on the

underlying probability models. These constraints can be provided in various forms

with subtle implications for the choice of an optimal model.

We adopt the following notation and terminology that emphasize the connection

between prefix codes and stochastic complexity. The response of interest is a

sequence of n values y = (y1, . . . , yn), with each yi a point in some data space

D so that y ∈ Dn = D × D × · · · × D. Our examples set D to {0, 1} for binary

data and to the real line R in the Gaussian case. We assume that the space of

possible outcomes D is known. Rephrased as a problem in coding, the objective

of model selection is to represent y using the shortest possible uniquely decodable

prefix code. Here, “shortest possible” typically has one of two meanings. In a worst-

case analysis, the chosen code for y is the solution of a minimax problem. Let A



8.2 MDL and Stochastic Complexity 197

denote a prefix-coding algorithm. For any y ∈ Dn, the codebook associated with A

represents y using `(A(y)) bits; an inverse lookup gives the decoding. A worst-case

analysis seeks a code whose length attains the minimax rate

min
A

max
y∈Dn

`(A(y)) . (8.1)

Alternatively, one can define the best code as that with the shortest length with

respect to some expectation [Barron, Rissanen, and Yu 1998].

The “models” that we study here are parametric probability distributions for

the data, and so we will identify a specific codebook by its associated distribu-

tion. Because of the Kraft inequality, we can associate any prefix code with a

(sub)probability distribution over Dn. Given a choice of parameters θ in some

space Θ, pθ identifies the codebook for y implied by, say, arithmetic coding of y

using the probability pθ(y). Implicit in our notation is that one knows the form of

the mapping that takes θ into a probability. For example, pµ,σ2 could denote the

normal distribution with mean µ and variance σ2. One often collects a family of

these models into classes, and here we use the term “library” for a collection of

codebooks indexed by θ ∈ Θ,

L(Θ) = {pθ : θ ∈ Θ} . (8.2)

Continuing with the Gaussian illustration, if Θ = R × R
+, then we have the

independently and identically distributed (i.i.d.) Gaussian library

G(Θ) = {pµ,σ2 : pµ,σ2(y) =
e−

P

(yi−µ)2/2

(2πσ2)n/2
, µ ∈ R, σ2 > 0} . (8.3)

Calligraphic letters denote libraries; we use L to denote a generic library and use B
and G for specific libraries. Notice that although any codebook pθ identifies a prefix

code for y, a library L(Θ) does not. We cannot encode y using L(Θ) alone; either

we must identify a specific pθ ∈ L(Θ) or unify the library into a single codebook.

The following section defines stochastic complexity as the length of a prefix code

for y obtained by an “encyclopedia,” a special codebook that represents a library.

We introduce a special name for this codebook to distinguish it from the codebooks

implied by parametric models pθ that make up a library. With the terminology

complete, Section 8.2 concludes with a guide to the rest of this chapter.

8.2 MDL and Stochastic Complexity

The minimum description length (MDL) criterion seeks the best library (model

class) for encoding a particular sequence y. The task is not to find the best

individual codebook per se, but rather to identify a library. Since we assume

that the mapping of parameters to codebooks pθ has known form (given θ), the

problem becomes one of choosing the parameter space Θ rather than the form of
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pθ. For example, we consider the problem of picking from regression models that

are distinguished by the number of predictors rather than the comparison of linear

regression to, say, other classes of generalized linear models.

To implement MDL thus requires a measure of how well a library can represent

y. Intuitively, one can proceed by first finding the maximum likelihood codebook

in L(Θ), say pθ̂(y). Since this codebook is indexed in a manner than depends upon

y, however, we cannot simply encode the data using the codebook pθ̂(y) alone

because the receiver would not know which of the codebooks in L(Θ) to use for

the decoding. Two-part codes provide an obvious solution: identify the codebook

in L(Θ) by prefixing the code obtained by pθ̂(y) with another code identifying θ̂(y).

Through some clever arguments reviewed in [Rissanen 1989], Rissanen shows that

one achieves a shorter overall code by coarsely identifying θ̂(y). The use of two-part

codes, however, introduces two problems. First, it is often neither easy nor obvious

to decide how to round θ̂(y); the discrete “spiral” codes given in [Rissanen 1983]

illustrate some of the difficulties. Second, two-part codes are not “Kraft-tight”; the

resulting implicit probability on Dn sums to less than 1.

Stochastic complexity addresses both problems. First, it provides a direct con-

struction that removes the subjective choice of how to encode θ̂(y). Second, stochas-

tic complexity encodes y with an efficient, one-part code. The underlying construc-

tion is rather natural: normalize the maximum likelihood code pθ̂(y) so that it

becomes a probability. Since the data itself determine the maximum likelihood es-

timator (MLE), pθ̂(y) is not a subprobability,

∫

Dn

pθ̂(y)(y)dy > 1 ,

(assuming a continuous model) and hence cannot define a prefix code for y. The

code length exceeds log 1/pθ̂(y) in order to identify which codebook in L(Θ) was

used to represent the data. Rather than tack on a code that identifies θ̂(y), one

can instead convert the library back into a codebook. We distinguish these unified

libraries from the parametric codebooks pθ by calling them encyclopedias. The

length of the code for y given by an encyclopedia is obtained by normalizing pθ̂(y)

to generate a probability over Dn. This normalization requires us to divide by

precisely the same integral that shows that pθ̂(y) is not a probability,

C (L, Θ, Dn) =

∫

Dn

pθ̂(y)(y)dy , where θ̂(y) = argmax
θ∈Θ

pθ(y) . (8.4)

Though this notation is cumbersome, we need these arguments to distinguish dif-

ferent forms of this normalization. The one-part code obtained from the resulting

encyclopedia encodes y using the normalized maximum likelihood (NML) proba-

bility, denoted

gL(Θ)(y) =
pθ̂(y)(y)

C (L, Θ, Dn)
. (8.5)

The NML encyclopedia possesses many advantages. Not only can gL(Θ) be com-
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puted routinely without the need to round the MLE, the resulting Kraft-tight code

obtains the minimax rate (8.1) [Shtarkov 1987].

The stochastic complexity of the library L(Θ) for representing y is defined to be

the length of the code provided by the resulting NML encyclopedia gL(Θ),

L(y;L, Θ, Dn) = log C(L, Θ, Dn) + log
1

pθ̂(y)(y)
, θ̂(y) ∈ Θ . (8.6)

The MDL criterion then picks the library that minimizes the stochastic complexity.

The log of the normalizing constant, log C(L, Θ, Dn), is known as the parametric

complexity of the library. It compensates for overfitting an excessive number of

parameters; thus it acts like a penalty term.

The use of stochastic complexity can often be simplified by using a particularly

simple asymptotic approximation for the parametric complexity. The underlying

asymptotic analysis fixes the dimension of the parameter space Θ and lets the length

n tend to infinity. Under suitable regularity conditions, it follows that [Rissanen

1996]

log C(L, Θ, Dn) =
dim(Θ)

2
log

n

2π
+ log

∫

Θ

|I(θ)|1/2dθ + o(1), (8.7)

where I(θ) is the asymptotic Fisher information matrix with elements

Iij(θ) = lim
n→∞

− 1

n

∂2 log pθ(y)

∂θi∂θj
. (8.8)

The leading summand of (8.7) suggests that, in regular problems, the addition of

each parameter increases the stochastic complexity by about 1
2 log n. This interpre-

tation motivates the common association of MDL with the Bayesian information

criterion (BIC) whose penalty also grows logarithmically in n.

This approximation is both appealing and effective when used in the context

of comparing a sequence of nested models of small dimension. For example, it

works well in choosing among low-order polynomials or autoregressions (although

comparisons tend to favor other criteria if prediction is the objective). For choosing

among models of large dimension, such as those we use to predict credit risk

[Foster and Stine 2002], however, the classic formulation of MDL (i.e., penalizing

by the number of parameters times 1
2 log n) no longer applies. For parameter-rich,

data-mining models, this approximation no longer offers a useful measure of the

complexity of the class.

The next three sections investigate the role of parameters in stochastic complex-

ity, with an emphasis on models with many parameters. In Section 8.3, we consider

the role of parameters in the Bernoulli library, a library that can be converted into

an encyclopedia. We show that the contribution of a parameter depends on the com-

plexity of the model itself; adding a parameter to a model with many adds less than

adding one to a model with few. In Sections 8.4 and 8.5, we consider the parametric

complexity of encyclopedias for Gaussian libraries. Section 8.4 considers methods

for bounding the parametric complexity of a low-dimension Gaussian library, and
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Section 8.5 considers high-dimensional models associated with denoising.

8.3 Parameters and the Bernoulli Library

We begin our discussion of stochastic complexity by choosing a context in which

it all works. For this section, the data are binary with D = {0, 1}. Codebooks for

y ∈ {0, 1}n in the usual library B define probabilities of the form

pθ(y) = θ
P

yi (1 − θ)n−
P

yi , (8.9)

with the parameter space Θ = [0, 1]. Given a binary sequence y, the library B([0, 1])

of i.i.d. codebooks fixes θ for all i; larger parameter spaces allow this probability to

vary over observations. In either case, we can compute the parametric complexity

explicitly and see how the dimension of Θ affects the stochastic complexity.

The existence of a sufficient statistic simplifies this calculation. Under the as-

sumed model class, the data are modeled as a realization of a sequence of indepen-

dent Bernoulli random variables. Let Sn =
∑

i Yi denote the sum of these hypo-

thetical random variables, and let θ̂ = Sn/n denote the MLE for θ. The sufficiency

of Sn for θ allows us to factor the distribution of Y = (Y1, . . . , Yn) into the product

of the distribution of Sn and that of Y conditional on Sn (which is thus free of θ).

Using these sufficiency arguments, the normalizing constant is

C(B, [0, 1], {0, 1}n) =
∑

y

pθ̂(y)(y)

=

n∑

s=0

pθ̂(y)(Sn = s)
∑

y:θ̂(y)=s/n

p(y
∣
∣ Sn = s)

=

n∑

s=0

pθ̂(y)(Sn = s)

=

n∑

s=0

(
n

s

)

(s/n)s(1 − s/n)n−s , (8.10)

where p without a subscript denotes a probability distribution that is free of

parameters. If we use Stirling’s formula to approximate the factorials in (8.10),

we obtain
(

n

s

)

(s/n)s(1 − s/n)n−s ≈
√

n
√

2πs(n − s)
.

This approximation is quite accurate except near the boundaries of the parameter

space. (The approximation has singularities for s = 0, n, but the actual summands

are 1. A Poisson approximation is more accurate at the extremes than this,

essentially, normal approximation.) Integrating the approximation gives

C(B([0, 1]), [0, 1], {0, 1}n) =

√
n√
2π

∫ n

0

1
√

s(n − s)
ds+O(1) =

√
n π

2
+O(1) . (8.11)
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The error in this approximation is about 2/3.

The stochastic complexity (8.6) of the i.i.d. library B([0, 1]) for y is thus the sum

of the code length for y plus the parametric complexity,

L(y;B, [0, 1], {0, 1}n) = 1
2 log nπ

2 + log 1/pθ̂(y)(y) + O(1/
√

n) .

The parametric complexity agrees with the asymptotic approximation (8.7). The

one parameter θ contributes about 1
2 log n the stochastic complexity.

The stochastic complexity of B(Θ) is invariant of one-to-one transformations of

Θ, even if such a transformation makes Θ unbounded. For example, if we write pθ
in the canonical form of an exponential family, then

pθ(y) = ey log θ/(1−θ)+log 1−θ, y = 0, 1,

or

pη(y) = ey η+ψ(η), y = 0, 1,

with η = log θ/(1 − θ), the log of the odds ratio. Expressed in this form, the

parameter space becomes R. The stochastic complexity remains the same, though,

since transforming the parameter space does not change the likelihood obtained by

the various codebooks. The MLE for η is η̂ = log θ̂/(1 − θ̂) and
∑

y

pη̂(y)(y) =
∑

y

pθ̂(y)(y) .

The contribution of a parameter does change, however, if we expand Θ to dimen-

sions on the order of the number of observations. While artificial, perhaps, in this

context, the use of stochastic complexity in data mining requires one to assess and

compare models of large dimension. With a richer class of models, we no longer

obtain an appealing separation of parameters from data. In such problems, the

asymptotic approximation (8.7) fails because the dimension of Θ grows with n. An

alternative, local asymptotic analysis leads to a rather different characterization of

the amount to penalize for each parameter, one for which the penalty is proportional

to the number of parameters rather than log n [Foster and Stine 1999].

Consider the “saturated” Bernoulli library B with the parameter space extended

to Θ = [0, 1] × [0, 1] × · · · × [0, 1] = [0, 1]n, allowing one parameter for each

observation. The MLE for θn = (θ1, . . . , θn) is θ̂n(y) = y. As a result, the length of

the maximum likelihood code for y collapses to zero,

log
1

pθ̂n(y)(y)
= log 1 = 0 .

The parametric complexity of B([0, 1]n) now comprises all of the stochastic com-

plexity of the encyclopedia, with all of the information from the data concentrated
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in the parameters,

log C(B, [0, 1]n, {0, 1}n) = log
∑

y

pθ̂n(y)(y) = log 2n = n .

Each parameter contributes just 1 bit, not 1
2 log n, to the complexity of B([0, 1]n).

Parameters in libraries for which the dimension of Θ is O(n) evidently add less to

the complexity than those in models of small, fixed dimension.

The concentration of the stochastic complexity into the parametric complexity

leads to a dilemma when one then tries to use stochastic complexity to choose

among model classes. The stochastic complexity of the saturated library B([0, 1]n)

is n, agreeing with the expected stochastic complexity of the very different, “null”

library B({ 1
2}) which fixes θi = 1

2 for all i. On average, stochastic complexity

cannot distinguish the saturated library that varies θ to match each observation

from a dogmatic “null” library that treats the data as i.i.d. noise. Models that

treat the data as pure signal have the same stochastic complexity (on average) as

those which treat the data as pure noise. Rissanen [2000] encounters such ambiguity

between “signal” and “noise” when using MDL in the denoising problem where the

dimension of the class of models is on the order of n.

8.4 Complexity of the Gaussian Library

The parametric complexity of many libraries is unbounded, and as a result one must

deviate from the clean definition of stochastic complexity that we have illustrated

so far. Perhaps the most important cases of this phenomenon are the Gaussian

libraries G(Θ) introduced in (8.3). The codebooks in a Gaussian library model y

as though it were a realization of random variables Yi
i.i.d.∼ N(µ, σ2). A Gaussian

library cannot be converted into an encyclopedia like those representing a Bernoulli

library B. The asymptotic approximation to the parametric complexity (8.7) reveals

the problem: the Fisher information (8.8) for µ is constant but the natural range

for this parameter is R. To see the problem more clearly, though, we will avoid this

approximation and work directly from the definition.

Assume for the moment that σ2 = 1 is known and focus on the one-parameter

library with unknown mean,

G(R) = {pµ : pµ(y) =
e−

P

(yi−µ)2/2

(2π)n/2
, µ ∈ R} .

Following [Barron et al. 1998], the parametric complexity is most easily found by

once again using the sufficiency of the sample average Y =
∑

Yi/n for µ. Modeled

as a sample of normals, the distribution of y factors into

pµ(y) = pµ(y) p(y|y)

where p(y|y) is the conditional distribution of y given Y , and thus is free of µ. The
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distribution of the sufficient statistic is N(µ, σ2/n),

pµ(y) =
( n

2πσ2

)1/2

e−
n

2σ2 (y−µ)2 .

When we set µ = y in the NML distribution, this density reduces to a constant,

py(y) =
( n

2πσ2

)1/2

. (8.12)

Since the parametric complexity log C(G, R, Rn) (with both Θ and D set to the real

line) is unbounded, we cannot use stochastic complexity as defined as a criterion

for model selection.

One approach to this dilemma is to bound the parametric complexity by con-

straining Θ. For example, the parametric complexity is finite if we constrain Θ to

the ball of radius R > 0 around the origin, ΘR = {µ : −R ≤ µ ≤ R}. It is important

to note that R is a constant chosen prior to looking at the data. This constraint

has no effect on the range of data; it only limits the values allowed for µ and its

MLE,

µ̂R(y) =







−R, y < −R ,

y, −R ≤ y ≤ R ,

R, R < y .

The parametric complexity of G(ΘR) is then 1 plus a multiple of the radius of the

parameter space,

C(G, ΘR, Rn) =

∫

Rn

pµ̂R(y)(y)p(y|y)dy

= 2

∫ ∞

R

( n

2πσ2

)1/2

e−(y−R)2/2 dy +

∫ R

−R

( n

2πσ2

)1/2

dy

= 1 +
2
√

nR√
2πσ2

. (8.13)

The addition of 1 in (8.13) arises from integrating over those y for which the MLE

lies on the boundary of ΘR. The associated stochastic complexity for an arbitrary

y ∈ R
n is then

LG(ΘR)(y) = log C(G, ΘR, Rn) + log 1/pµ̂R(y)(y)

= log(1 +
2
√

nR√
2πσ2

) + log 1/py(y) + K(py‖pµ̂R) .

The last term K(py‖pµ̂) is the Kullback-Leibler divergence between the distribution

pµ̂, which uses the constrained MLE, and py , which uses the unconstrained sample

average,

K(p‖q) =

∫

Dn

p(y) log
p(y)

q(y)
dy .

This approach allows us to use stochastic complexity as before, with a single ency-
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clopedia representing a library. The sender and receiver can agree to a particular

choice of R prior to encoding y. Stine and Foster [2000] label (8.13) the uncondi-

tional parametric complexity.

This unconditional approach introduces a problem, however, into the use of

stochastic complexity as the criterion for MDL. One must decide prior to observing

y how to constrain Θ. Restricting µ to lie in ΘR may seem natural, but certainly

other choices are possible. [Stine and Foster 2000] propose a competitive analysis to

pick optimal constraints, but here we consider an alternative method that bounds

the parametric complexity in a rather different manner. This alternative constrains

the data rather than the parameter space.

The most common method for bounding the parametric complexity constrains

the data space Dn rather than Θ. Let Dn
R denote the subset of R

n for which the

average of y lies inside ΘR,

Dn
R = {y : y ∈ R

n,−R ≤ y ≤ R} . (8.14)

Under this constraint, the normalizing constant becomes

C(G, R, Dn
R) =

∫

Dn
R

py(y) dy =
2
√

nR√
2πσ2

, (8.15)

which is one less than the constant obtained by constraining the parameter space.

Notice that restricting y to Dn
R implies a constraint on Θ as well,

C(G, R, Dn
R) = C(G, ΘR, Dn

R) .

To distinguish such implicit constraints on Θ from those set externally, our notation

omits the implicit constraints on Θ when induced by those placed on y.

When constraining y, one must ensure that y lies in Dn
R or else the library

lacks a codebook for the data. Thus, in applications, one replaces the a priori

bound R by a data-dependent constraint, say R(y). R(y) is usually chosen so

that the unconstrained MLE lies in the implicit parameter space, y ∈ ΘR(y). This

measure of complexity, however, ignores the fact that the receiver needs to know y.

A feature of y has “leaked out” of the normalization process and must be encoded

separately. Constraining Θ directly produces a “one-volume” encyclopedia that

generates a prefix code for y. Constraining the data space Dn leads to a “multi-

volume” encyclopedia that cannot generate a prefix code — the receiver does not

know which of the volumes to use to decode the message. Consequently, one must

add to the stochastic complexity the length of a prefix that identifies R(y),

L(y;G, R, Dn
R(y)) = `(R(y)) + log

(
2
√

nR(y)√
2πσ2

)

+ log 1/py(y) .

The length of the code for R(y) lies outside the framework of the underlying NML

model, and thus this approach sacrifices its minimax optimality. In a one-parameter

model, the addition of a code for R(y) has little effect on the selection of a model

by MDL, especially when formulated along the lines of, say, R(y) = 22k(y) for some
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integer k(y) as in [Rissanen 2000]. The next section shows, however, that the impact

of “leaking information” outside the NML normalization grows as one adds more

parameters.

Before moving to models of large dimension, the presence of data-dependent

bounds introduces other problems as well. In particular, the form of the data-

driven constraints can determine whether a library has infinite or finite complexity.

We illustrate this aspect of data-driven constraints by introducing an unknown

variance σ2. To avoid singularities in the likelihood, it is natural to bound σ2 away

from zero, say 0 < σ2
0 ≤ σ2.

With σ2 estimated from y, the parametric complexity depends upon how one

constrains y. If y is constrained so that y ∈ ΘR, the parametric complexity is infinite

unless we introduce an upper bound for σ2. Barron et al. [1998] and Hansen and

Yu [2001] employ this type of constraint. If instead y is constrained by restricting y

to a region defined on a standardized scale, say y ∈ Θzσ/
√
n as in [Rissanen 1999],

then the parametric complexity is finite, without the need for an upper bound on

σ2. This effect of the “shape” of the constraints does not appear if we constrain the

parameter space rather than the data.

We begin again with the factorization of the likelihood pµ,σ2(y) implied by

sufficiency. The statistics Y and S2 =
∑

(Yi − Y )2/n are independent and jointly

sufficient for µ and σ2. The Gaussian likelihood thus factors into a product of three

terms,

pµ,σ2(y) = p(y|y, s2) pµ,σ2 (y) pσ2(s2) ,

where pσ2(s2) denotes the chi-squared density of S2,

pσ2(s2) =

(
ns2

σ2

)α−1

e−ns
2/2σ2

Γ(α)2α
n

σ2

=
cn
σ2

(
s2

σ2

)α−1

e−ns
2/2σ2

, (8.16)

where the constants cn and α are

cn =
nα

Γ(α)2α
, α =

n − 1

2
. (8.17)

The conditional density of the data p(Y |Y , S2) given Y and S2 is free of µ and σ2.

Now let D̂n denote a subset of R
n for which the MLE lies within Θ̂. Given this

constraint, the parametric complexity is the log of the following integral:

C(G, Θ, D̂n) =

∫

Θ̂

∫

D̂n

p(y|y, s2)py,s2(y) ps2(s
2)dy dy ds2

= kn

∫

Θ̂

(
1

s2

)3/2

dy ds2 , (8.18)



206 The Contribution of Parameters to Stochastic Complexity

where kn collects constants from the chi-squared and normal densities,

kn = cn

√
ne−n/2√

2π
=

nα+1/2e−n/2√
2π Γ(α) 2α

. (8.19)

To see how the form of the constraints affects the parametric complexity, we just

plug them into the integral (8.18) and evaluate. With y constrained so that y ∈ ΘR

and s2 ≥ σ2
0 , the integral splits as

∫

py,s2(y)(y)dy = kn

∫ R

−R
dy

∫ ∞

σ2
0

(
1

s2

)3/2

ds2 = kn
2 R

σ2
0

.

The conditional parametric complexity is finite. On the other hand, with y con-

strained so that y lies within a standardized range (e.g., we plan to encode data

whose mean lies within 20 standard errors of zero), the parametric complexity is

infinite,

∫

py,s2(y)(y)dy = kn

∫ ∞

σ2
0

∫ zs/
√
n

−zs/√n

(
1

s2

)3/2

dy ds2 = 2knz

∫ ∞

σ2
0

1

s2
ds2 .

One can bound the complexity in this case by adding a further constraint to the

data that restricts y to those sequences for which, say, s2 ≤ σ2
1 .

Bounding the parametric complexity by constraining y thus gives two rather

different measures of the complexity of these Gaussian libraries. Consider the effect

of restricting y to those sequences for which s2 ≤ σ2
1 . If y is also constrained so that

y is bounded on the standardized scale, the parametric complexity is a multiple of

log
(
σ2

1/σ2
0

)
. If y is bounded directly, the parametric complexity is a multiple of

1/σ2
0 − 1/σ2

1. One tends to infinity with σ2
1 , whereas the other remains finite.

Unconditional bounds, in contrast, give the same answer whether µ is restricted

directly or on a standardized scale. In either case, the parametric complexity is

unbounded. Denote the constrained parameter space by

Θ
σ2
1

R = {(µ, σ2) : −R ≤ µ ≤ R, σ2
0 ≤ σ2 ≤ σ2

1} .

Let θ̂ denote the MLE for this space. These constraints are “rectangular” in the

sense that

θ̂ = (µ̂, σ̂2) =
(
min(max(−R, y), R), min(max(σ2

0 , s2), σ2
1)
)

.

If (y, s2) lies outside of Θ
σ2
1

R , then one obtains the MLE by projecting this point

perpendicularly onto the boundary of Θ
σ2
1

R . When (y, s2) violates both constraints,

the projected point is a “corner” of Θ
σ2
1

R [e.g., one corner is (R, σ2
1)]. For these

rectangular bounds, the normalizing constant is

C(G, Θ
σ2
1

R , Rn) =

∫

Rn

pµ̂,σ̂2(y) dy

≥
∫

y:σ2
0≤s2≤σ2

1

pµ̂,s2(y) dy



8.5 Complexity of Libraries with High Dimension 207

=

∫ σ2
1

σ2
0

ps2(s
2)

(

1 +
2
√

nR√
2πs2

)

ds2

= cne
−n/2

∫ σ2
1

σ2
0

1

s2
ds2 + 2knR

(
1

σ2
0

− 1

σ2
1

)

= cne
−n/2

(

log
σ2

1

σ2
0

)

+ 2knR

(
1

σ2
0

− 1

σ2
1

)

.

Notice that C(G, Θ
σ2
1

R , Rn) has both the log of the ratio of the bounds for σ2 as well

as the difference of the ratios. Thus, C(G, Θ
σ2
1

R , Rn) tends to infinity with σ2
1 .

A similar calculation shows that the normalizing constant also tends to infinity

when the constraints for µ are specified on the standardized scale. If we restrict

µ to Θzσ/
√
n, the projections of (y, s2) onto the parameter space are no longer

rectangular. Nonetheless, we can show that the normalization again tends to infinity.

Regardless of the location of y, the probability at the MLE is at least as large as

that at a restricted location, pµ̂,σ̂2 ≥ p0,σ̂2 . Consequently, the normalizing constant

is bounded below as follows:

C(G, Θ
σ2
1

zσ/
√
n
, Rn) =

∫

Rn

pµ̂,σ̂2(y) dy

≥
∫

Rn

p0,σ̂2(y) dy

≥
∫

y:σ2
0≤s2≤σ2

1

p0,s2(y) dy

=

∫ σ2
1

σ2
0

ps2(s
2)ds2

= cne
−n/2 log

σ2
1

σ2
0

.

Again, the normalizing constant tends to infinity as σ2
1 grows.

8.5 Complexity of Libraries with High Dimension

We consider the use of MDL in the so-called denoising problem. In denoising, the

response y is modeled as a weighted average of selected orthogonal signal vectors

{Wn
j }nj=1 plus Gaussian noise,

Y =
∑

j∈γ
βjW

n
j + σεn , εi

i.i.d.∼ N(0, 1) . (8.20)

The range of the summation is a set of indices γ ⊂ {1, . . . , n} that indicates which of

the signal vectors have nonzero coefficients. If j ∈ γ, then W n
j affects y; otherwise,

the inclusion of W n
j only adds noise to a fitted reconstruction. The signal vectors

might be wavelets, sines and cosines, or any other orthogonal basis for R
n. The

problem in denoising is to identify γ; ideally, the reconstruction requires only a

small subset of the signal vectors when the basis is well-chosen. Thus, denoising
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amounts to variable selection in an orthogonal regression in which one has just as

many possible predictors as observations.

Because the signal vectors are orthogonal, these models have a convenient canon-

ical form. We can rotate any family of signal vectors into the standard basis for R
n

in which Wn
j = enj = (0, . . . , 1j , 0, . . . , 0). When (8.20) is re-expressed in this way,

the underlying probability model becomes the multivariate normal location model,

Y = µn + σ ε for µn ∈ R
n. The libraries used in denoising thus generalize the i.i.d

library (8.3) by greatly expanding the parameter space

G(Θ) = {pµn : pµn(y) =
e−

P

(yi−µi)
2/2

(2π)n/2
, µn ∈ Θ} . (8.21)

Each codebook in G(Θ) describes y as a collection of independent, normal random

variables, Yi ∼ N(µi, 1), i = 1, . . . , n. The trick is to figure out which µi 6= 0. We

include the saturated library that allows one parameter per observation and duck

some of the boundary problems described in the prior section by fixing σ2 = 1.

Obviously, one would need to estimate σ2 in an application. In wavelet denoising

[Donoho and Johnstone 1994], σ2 can be estimated quite well from the coefficients

of the n/2 most localized basis elements.

Our interest lies in using stochastic complexity as the criterion for picking the

best dimension for the parameter space. As a first step, consider libraries that are

identified by a given set γ of nonzero means. Let Θγ = {µn : µn ∈ R
n, µi = 0, i 6∈ γ}

denote a q = |γ| dimension subspace of R
n. If γc denotes the complement of γ

relative to {1, 2, . . . , n}, then G(Θγ) contains codebooks for the following models:

G(Θγ) = {pµn : pµn(y) =
e−(

P

γ(yi−µi)
2+

P

γc y
2
i )/2

(2π)n/2
} (8.22)

Given γ, we can introduce constraints like those considered in the prior section

to obtain the parametric complexity. It remains to identify γ. If we think of

representing γ using a vector of Boolean indicators, then the ideas of Section 8.2

become relevant. The stochastic complexity of B([0, 1]) for an observed sequence of

n i.i.d. Boolean random variables is approximately 1
2 log n+log

(
n
q

)
. If we presume γ,

then the resulting stochastic complexity omits the cost of identifying the coordinates

of the nonzero parameters.

Rissanen [2000] handles this task by presuming all 2n models are equally likely

and adds an n-bit code for γ to the complexity of G(Θγ) for all γ. Because this

addition adds the same amount to the stochastic complexity for every parameter

space, it has no effect on the selection of the best library. This approach does,

however, imply a strong bias toward models with about n/2 nonzero parameters,

as though γi
i.i.d.∼ Bernoulli( 1

2 ). If instead we incorporate more of γ into the NML

normalization, we discover that stochastic complexity adapts to the number of

nonzero parameters.

One way to retain more of the complexity with the NML normalization is to

presume one has an a priori ordering of the basis elements, for example [Barron
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et al. 1998]. This approach is adopted, for example, when MDL is used to pick

the order of a nested sequence of polynomial regressions. Typically, one does not

compare all possible polynomials, but rather only compares an increasing sequence

of nested models: a linear model to a quadratic model, a quadratic to a cubic, and

so forth. For the canonical denoising problem, this knowledge is equivalent to being

given an ordering of the parameters, say,

µ2
(1) ≤ µ2

(2) ≤ · · · ≤ µ2
(n) .

While natural for polynomial regression, such knowledge seems unlikely in denois-

ing.

To retain the coordinate identification within an encyclopedia, we aggregate

indexed libraries G(Θγ) into larger collections. Again, let q = |γ| denote the number

of nonzero parameters and let

Θq = ∪|γ|=qΘγ

denote the union of q-dimensional subspaces of R
n. Our goal is to select the best

of aggregated library G(Θq). Said differently, our representative encyclopedia has a

volume for each q = 1, . . . , n. The use of such an encyclopedia for coding requires

only q, not γ itself, to be specified externally. Because any reasonable code for

positive integers assigns roughly equal-length codes to q = 15 and q = 16, say, the

leakage of q outside of the encyclopedia has minimal effect on the use of stochastic

complexity in MDL. We can encode q in O(log n) bits, whereas γ requires O(n)

bits.

Like other Gaussian libraries, the parametric complexity of G(Θq) is unbounded

without constraints. To specify these, let

y2
(1) < y2

(2) < · · · < y2
(n)

denote the data ordered in increasing magnitude. The MLE µ̂nq ∈ Θq matches the

largest q elements y(n−q+1), . . . , y(n) and sets the others to zero, implying

pµ̂n
q
(y) =

e−(y2
(1)+···+y2

(n−q))/2

(2π)n/2
.

In order to bound the parametric complexity, we constrain y. For x ∈ R
n, let

‖x‖2 =
∑

i x
2
i denote the Euclidean norm. Following [Rissanen 2000], we constrain

the data to those y for which the MLE lies in a ball of radius
√

qR around the

origin,

Dn
q,R = {y : ‖µ̂nq (y)‖ ≤ √

q R} .

As with one-dimensional Gaussian models, a prefix code must include a code for R

as well as q to identify the appropriate encyclopedia. (For denoising, q R2 constrains

the “regression sum of squares” that appears in the numerator of the standard F -

test of a least squares regression. In particular, R2 is not the R-squared statistic
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often seen in regression output.)

The parametric complexity of the library G(Θq) is the log of the integral of

the maximum likelihood density over the restricted range Dn
q,R. We estimate this

complexity by partitioning the normalizing integral into disjoint subsets for which

the same coordinates form µ̂nq . The subset of nonzero parameters γ is fixed over

each of these subsets, and the integrals over these subsets are identical. Since there

are
(
n
q

)
partitions of the indices that fix γ, the parametric complexity is

(
n
q

)
times

the integral for the convenient subset in which the maximum of the n − q smaller

elements, mq(y) = max(y2
1 , . . . , y

2
n−q), is smaller than the minimum of the q larger

elements, Mq(y) = min(y2
n−q+1, . . . , y

2
n). Note that mq(y) < Mq(y). We then obtain

C
(
G, Θq, D

n
q,R

)
=

∫

Dn
q,R

pµ̂n
q
(y) dy

=

(
n

q

)∫

‖yn−q+1,...,yn‖2<qR2

Fn−q(Mq(y))

(2π)q
dyn−q+1 · · · dyn , (8.23)

where Fk(x) is the integral

Fk(x) =

∫

y2
1 ,...,y

2
k<x

e−(y2
1+···+y2

k)/2

(2π)k/2
dy1 · · · dyk . (8.24)

This integral resembles the cumulative distribution of a chi-squared random vari-

able, but the range of integration is “rectangular” rather than spherical.

The presence of a partition between the largest q elements of y and the remaining

n− q elements in this integration makes it difficult to compute the exact stochastic

complexity, but we can still get useful upper and lower bounds. The upper bound

is easier to find, so we start there. If we expand the range of integration in Fn−q(x)

to all of R
n−q , the integral is just that of a q-dimensional normal density and so

Fn−q(x) ≤ 1. Thus, for this bound the inner integral expressed as Fn−q in (8.23)

is just 1, and the constraints together with the binomial coefficient give an upper

bound for the normalizing constant,

C
(
G, Θq, D

n
q,R

)
≤
(

n

q

)∫

‖yn−q+1,...,yn‖2<qR2

dyn−q+1 · · · dyn

=

(
n

q

)

Vq(
√

qR) , (8.25)

where Vk(r) denotes the volume of the ball of radius r in R
k,

Vk(r) =
rkπk/2

(k2 )!
.

The lower bound results from further constraining the range of integration in (8.23).

Rather than integrate over all boundaries between the smaller n− q terms and the

larger q, we integrate over a single boundary at 2 log(n−q), mq(y) ≤ 2 log(n−q) ≤
Mq(y). The choice of 2 log(n − q) as the point of separation follows from the

observation that 2 log(n−q) is an almost sure bound for the largest squared normal
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in a sample of n − q. If Z1, . . . , Zn
i.i.d.∼ N(0, 1) and we set

P (max(Z2
1 , . . . , Z2

n) < 2 logn) = ωn ,

then limn→∞ ωn = 1 [Leadbetter, Lindgren, and Rootzen 1983]. It follows that

C
(
G, Θq, D

n
q,R

)
≥
(

n

q

)∫

2 log(n−q)≤‖yn−q+1,...,yn‖2<qR2

dyn−q+1 · · · dyn

=

(
n

q

)

Aq(
√

2 log(n − q),
√

qR) , (8.26)

where Vq(r1, r2) with two arguments denotes the volume of the annulus of inner

radius r1 and outer radius r2 in R
q ,

Vq(r1, r2) = Vq(r2) − Vq(r1) .

Combining (8.25) with (8.26), the parametric complexity of the model class with q

nonzero parameters is bounded between
(

n

q

)

Vq(
√

2 log n,
√

qR) ≤ C
(
Gq , Θq , D

n
q,R

)
≤
(

n

q

)

Vq(
√

qR) . (8.27)

A further approximation to these bounds provides insight into the contribution of

parameters to the stochastic complexity of high-dimensional models. In practice, a

data-driven constraint, say R(y), replaces R to ensure the encyclopedia can encode

y. For q of moderate size, the volume of the annulus in the lower bound of (8.27)

is small in comparison to that of the ball itself; heuristically, most of the volume of

a sphere in R
q lies near the surface of the sphere. Following this line of reasoning

and approximating the logs of factorials as log k! ≈ k log k (omitting constants

unaffected by q), we obtain an expression for the parametric complexity that is

easy to interpret,

log C
(

G, Θq, D
n
q,R(y)

)

≈ log

(
n

q

)

+ q log R(y)

≈ q log
n

q
+ q log R(y) , (8.28)

which is reasonable for q � n.

Consider two situations, one with q large, nonzero µi and the other with q

smaller, nonzero parameters. For the “strong-signal” case, assume that the nonzero

parameters in µn are all much larger than the almost sure bound
√

2 log n. In

particular, assume that these µi = O(
√

n),

Strong signal: µ2
i ≈ c n , i ∈ γ, ⇒ R2 = c n .

For the “weak-signal” case, we assume the effects are all near the noise threshold,

Weak signal: µ2
i ≈ 2 logn , i ∈ γ, ⇒ R2 = c log n .

For coding data with strong signal, the approximation (8.28) to the parametric
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complexity resembles the approximation obtained by the standard asymptotic

analysis of models with small, fixed dimension. In particular, q
2 log n dominates

the approximation (8.28) if R2 = O(n). This similarity is natural. Given a fixed,

parametric model with finitely many parameters, the standard analysis lets n → ∞
while holding the model fixed. Thus, the estimation problem becomes much like our

strong-signal case: with increasing samples, the standard errors of estimates of the

fixed set of parameters fall at the rate of 1/
√

n, and the underlying “true model”

becomes evident. The term q log R dominates the approximation (8.28), implying

a penalty of 1
2 log n as the model grows from dimension q to q + 1, just as in (8.7).

The penalty for adding a parameter is rather different when faced with weak

signals. In such cases, the approximation (8.28) suggests a penalty that resembles

those obtained from adaptive thresholding and empirical Bayes. With R = O(log n),

q log n/q dominates the approximate parametric complexity (8.28). This type of

penalty appears in various forms of so-called adaptive model selection. For choosing

q out of p possible parameters, one can motivate an adaptive model selection

criterion that contains a penalty of the form q log p/q from information theory

[Foster and Stine 1996], multiple comparisons [Abramovich, Benjamini, Donoho,

and Johnstone 2000], and empirical Bayes [George and Foster 2000].

8.6 Discussion

So, what is the asymptotic contribution of parameters to the stochastic complexity

of a model? Unfortunately, the answer appears to be that “it depends.” Ideally, the

parametric complexity is a fixed measure of the “complexity” of a class of models,

or library. Because the idealized parametric complexity is invariant of y, it offers

a clear assessment of how the fit (namely, the maximum of the log-likelihood) of a

model can overstate the ability of such models to represent data. In models with rich

parameterizations, the parametric complexity sometimes increases at the familiar

rate of 1
2 log n per parameter (one-parameter Bernoulli, high-signal denoising), but

at other times grows dramatically slower. The cost per parameter is only 1 in

the saturated Bernoulli model and about log n/q in low-signal denoising. The latter

problem, finding the subtle, yet useful parameters from a large collection of possible

effects seems, to us, most interesting and worthy of further study.

Adaptive criteria that vary the penalty for adding a parameter have demonstrated

success in applications. For example, we have built predictive models for credit

risk that consider on the order of 100,000 features as predictors [Foster and Stine

2002]. The model was identified using a variation on the adaptive rule suggested

in the weak-signal denoising problem. Such applications of adaptive rules require

other important considerations that we have not addressed here. In particular,

modeling with an adaptive rule requires careful estimation of the standard error of

parameters. In modeling credit risk, the introduction of several spurious predictors

leads to bias in the estimate of the effects of subsequent predictors and a cascade

of overfitting.
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