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SUMMARY

Can we forecast the probability of an arbitrary sequence of events happening

so that the stated probability of an event happening is close to its empirical

probability? We can view this prediction problem as a game played against

nature, where at the beginning of the game Nature picks a data sequence

and the forecaster picks a forecasting algorithm. If the forecaster is not

allowed to randomize, then Nature win; there will always be data for which

the forecaster does poorly. This paper shows that, if the forecaster can

randomize, the forecaster wins in the sense that the forecasted probabilities

and the empirical probabilities can be made arbitrarily close to each other.

Some keywords: Brier Score; Calibration; Competitive ratio; Regret; Uni-

versal prediction of sequences; Worst case.

1 Introduction

Probability forecasting is the act of assigning probabilities to an uncertain

event. It is an activity widely practised in meteorological circles. For exam-

ple, since 1965, the U.S. National Weather Service has been in the habit of

making and announcing probability of precipitation (PoP) forecasts. Such a
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forecast is interpreted to be the probability that precipitation, defined to be

at least 0.01 inches, will occur in a specified time period and area. These PoP

forecasts are now popularly accepted by the American public as meaningful

and informative.

There are many criteria for judging the effectiveness of a probability fore-

cast (Murphy and Epstein, 1967). In this paper we limit ourselves to the

consideration of calibration, sometimes termed reliability. Dawid (1982) of-

fers the following intuitive definition of calibration:

“Suppose that, in a long (conceptually infinite) sequence of weather

forecasts, we look at all those days for which the forecast proba-

bility of precipitation was, say, close to some given value ω and

(assuming these form an infinite sequence) determine the long run

proportion p of such days on which the forecast event (rain) in

fact occurred. The plot of p against ω is termed the forecaster’s

empirical calibration curve. If the curve is the diagonal p = ω,

the forecaster may be termed (empirically) well calibrated.”

We give a rigorous definition later.

Calibration by itself is not a sufficient condition for a forecast to be
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deemed good. To see this, suppose there are two weather forecasters facing

the following weather sequence: dry, wet, dry, wet,. . .. One always forecasts a

probability of 1/2 of rain each day and the other alternates 0, 1, 0, 1, . . .. Both

forecasters are well calibrated, but the forecasts of the first are clearly less

useful than those of the second. Now consider two uncalibrated forecasts, the

first of which always forecasts a probability of 1/3 and the second of which

alternates 1, 0, 1, 0, . . ., always generating an incorrect forecast. Which of

these two is better is a matter of debate; the first has a lower quadratic error

but the second gets the ‘pattern’ of rain correct. Both seem dominated by

the two forecasts discussed previously. Thus, calibration does seem to be an

appealing minimal property that any probability forecast should satisfy.

The notion of calibration only makes sense if one can construct forecasts

that are calibrated. Regrettably, Oakes (1985) has proved that no deter-

ministic forecasting sequence can be calibrated for all possible sequences, see

Dawid (1985) for a different proof. Specifically, Oakes shows that it is impos-

sible to construct a joint distribution for an infinite sequence of events whose

posterior mean is guaranteed to be calibrated for every possible sequence of

outcomes.

A way around this impossibility result is to relax the requirement that a
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forecast be calibrated against all possible sequences. Perhaps it is sufficient

that the forecaster be calibrated for some restricted family of distributions.

Dawid (1985) argues that this can result in forecasting schemes that are

computationally burdensome and in some cases not computable at all. Al-

ternatively, one can reject the notion that calibration is a desirable or useful

notion at all. Schervish (1985), for example, offers two arguments for this

view. The first is that calibration is a long run criterion: in the short run

(when we are alive) a forecaster may do quite well. The second is that while

a malevolent Nature may be able to make one forecaster look bad according

to the calibration criterion, its harder for her to make many forecasters look

bad at the same time.

Our goal in this paper is to rescue the notion of calibration. We get

around the impossibility result of Oakes by broadening the definition of cali-

bration to include randomized forecasts. By carefully choosing our definition

of calibration for randomized forecast, we show how to construct a forecast

which is in fact approximately calibrated. Finally, we generalize our results

to the case when what is being forecast is a distribution, not just a point.
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2 Notation and Definitions

For ease of exposition assume our forecasting method, F , is assigned the

task of forecasting the probability of two states of nature, wet or dry. The

main result holds for more than 2 states. The proof is the same, just more

notation. Denote by Xt the outcome in period t: Xt = 1 if it is wet and

Xt = 0 if it is dry. Denote by XT the sequence of wet and dry days up to

and including period T . Since we can interpret XT to be the first T terms

of an infinite sequence X∞ that has been revealed to us, we will, when there

is no ambiguity, write X for XT .

In our context a forecasting method is simply a function that associates

with any binary sequence, from the space of all binary sequences, a unique

number in the interval [0, 1]. A randomized forecasting method would asso-

ciate with each binary sequence a probability distribution over [0, 1] which

governs the selection of a number in [0, 1]. The forecast that F makes in

period t will be denoted by ft = F (X t−1). Let nT (p;F,X) be the number of

times F forecasts p up to time T . Let ρT (p;X,F ) be the fraction of those

times that it actually rained. That is,

nT (p;F,X) ≡
T∑
t=1

Ift=p
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ρT (p;F,X) ≡
T∑
t=1

Ift=pXt

nt(p)
,

where I is the indicator function. In the original definition of calibration it

was assumed that F was restricted to selecting forecasts from a finite set,

A, fixed a priori. One definition of calibration is the following: F is well

calibrated with respect to X if and only if, for each p ∈ A,

lim
t→∞

ρt(p;X,F ) = p.

Another definition is based on the calibration component of the Brier score

(Brier (1950), Murphy (1972, 1973). See Blattenberger and Lad (1985) for

an exposition. To introduce this definition, let the calibration score of F

with respect to X after n periods be denoted by Ct(F,X) where

Ct(F,X) =
∑
p∈A
{ρt(p;X,F )− p}2nt(p;F,X)

t
.

Thus, F is well calibrated with respect to X if an only if Ct(F,X) goes to

zero as t goes to infinity.

The requirement that F select from a fixed set A is not a severe restriction

for practical purposes. Many weather forecasters forecast probabilities to

only one decimal place.
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3 Rules of the game

So that the assumptions underlying our analysis are clear, we frame the

analysis in terms of a repeated game between two players. One is the statis-

tician (he) making the probability forecasts and the other is Nature (she)

who chooses the outcomes. Nature picks the data X and the statistician

picks the forecast function F . The payment from the statistician to Nature

after t rounds of play is Ct(F,X). The statistician would like to play so that

Ct(F,X) is vanishingly small in the limit. In the case when the statistician

employs a randomized forecasting rule, the goal is to make Ct(F,X) vanish-

ingly small in some probabilistic sense, which we will specify later. For the

moment, if the statistician succeeds in making Ct(F,X) vanishingly small in

an appropriate sense, we will say that he wins the game.

Whether or not the statistician can win the game depends on his fore-

casting scheme as well as the power of his adversary, Nature. We describe a

number of different assumptions about the power of the adversary.

Prescient Adversary: In this scenario Nature knows the forecast that

the statistician will make on each round before she chooses the next element

of the sequence, ‘rain’ or ‘shine’. It is impossible for the statistician to
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win the game under these conditions, (Oakes, 1985). To see why, suppose

the statistician uses some deterministic forecasting scheme F . Consider the

following procedure for generating a sequence X (Dawid, 1985):

Xt =


1 if in period i the forecaster predicts a probability ≤ 0.5

0 otherwise.

A straightforward calculation establishes that Ct(F,X) ≥ 1/4 for all deter-

ministic forecasting methods F . The case of equality occurs when F is the

forecast that generates ft = 1/2 for all i.

It makes no difference if the statistician employs a randomized forecasting

scheme. Since Nature knows the forecast before she moves, this is essentially

equivalent to the deterministic set up once we have conditioned on the ran-

domization.

If the statistician’s payoff orloss function is changed, for example if the

Brier Score is used instead of the calibration score, then the statistician can

win at this game against a prescient adversary (Foster, 1991; Littlestone

and Warmuth, 1994; Vovk, 1990; Feder, Mehrav and Gutman, 1992; Cover,

1991).

Oblivious Adversary: In this scenario Nature knows only the forecast-

ing scheme that will be used by the statistician. Nature then picks the entire
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sequence at the start of the game. In the case when the statistician uses a

deterministic forecasting scheme, there is no difference between the oblivious

and prescient adversary. Nature need only run the statistician’s forecasting

algorithm to work out what he will predict on each round. When the statisti-

cian uses a randomized forecast, however, picking the sequence at the start of

the game means that Nature will not know the results of the randomization

on each round, although she knows the distribution over the different fore-

casts that the statistician will use. It will follow as an immediate corollary of

the main result that the statistician can win against an oblivious adversary.

Results for other kinds of loss functions can be found in Foster and Vohra

(1993).

Adaptive Adversary: In this scenario Nature will know the forecasting

rule used by the statistician. If the statistician uses a deterministic forecast,

Nature will be able to work out the forecast that will be generated before

she moves. If the forecast used is a randomized one, Nature will know the

distribution over the possible forecasts before she moves but not the actual

realization. Unlike the oblivious adversary, Nature is not restricted to choos-

ing the entire sequence at the start of the game. She can condition on the

previous plays that the statistician has made. Thus, as time goes on, Nature
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can learn more about what the statistician’s behaviour is, but the statistician

can still randomize on the next move so that Nature does not know exactly

what he will do.

There are two equivalent ways of viewing the strategies used by the statis-

tician against an adaptive adversary. The first is to allow the statistician to

randomize only before the first move. In other words, he picks a single fore-

casting scheme at random. Alternatively, he is allowed to randomize on each

successive round. Assuming that Nature can only observe the actions taken

by the statistician and not the actual randomization, these two variations

are equivalent. It is the second view we adopt in this paper.

The adaptive adversary appears to be less powerful than the prescient one,

and this is a weakness on which the statistician can capitalize on. Consider

the randomized forecasting strategy defined as follows:

ft =



2/3 with probability 2/3 if Xt−1 = 1

1/3 with probability 1/3 if Xt−1 = 1

2/3 with probability 1/3 if Xt−1 = 0

1/3 with probability 2/3 if Xt−1 = 0

For this particular strategy one can establish after tedious calculations that

max
X

Ct(F,X) = 2/9 + op(1), where op(1) tends to zero in probability as
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n tends to infinity. Hence, minF maxX Ct(F,X) < 1/4, with probability

tending to 1. By randomizing in this way we are implicitly operating two

forecasting strategies instead of one. Thus, Nature finds it harder to miscal-

ibrate F . The rest of this paper will show how to improve this 2/9 + op(1)

down to op(1).

In this paper we assume that Nature is an adaptive adversary.1 Here is a

precise statement of the rules we will follow:

1. The statistician begins by choosing a randomized forecasting method or

function F and reveals only the distribution of this forecast to Nature.

2. In period t ≥ 1, the statistician generates ft(= F (X t−1)), and, simulta-

neously, Nature selects the value of Xt. Nature knows the distribution

of strategies that the statistician will use, but not the actual value of

the randomization.

3. The penalty the statistician incurs after t rounds is Ct(F,X).

Alternatively, we can state our goal without recourse to using a game-

theoretic model. The object is to find an F that is, ε-calibrated, according

1Freund and Schapire (1995) discuss the relationship between the adaptive and oblivi-

ous adversary.
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to the following definition.

Definition (ε-Calibration) A randomized forecast rule F is ε-calibrated

if, for all X,

lim
t→∞

pr{Ct(F,X) < ε} > 1− ε.

Note that X is allowed to be a stochastic process that may depend on the

previous realizations of the F ’s and X’s.

Within the context of a game, the existence of an F that is ε-calibrated

is implied by showing that minF maxX E[Ct(F,X)] is less than ε2 for all t

sufficiently large, where the expectations are over the distributions chosen by

Nature and by the statistician. The proof is via Jensen’s inequality:

min
F

max
X

P [Ct(F,X) > ε] ≤ min
F

max
X

E[Ct(F,X)]/ε = ε.

Likewise, if an F exists which is ε-calibrated then our security level is less

than 2ε. Since both of these can be shown to go to zero, they are equivalent

statements.

4 An Argument of Sergiu Hart

Some readers of earlier versions of this paper have derived alternative proofs

of the main result. Among these is the following elegant but non-constructive
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argument of Sergiu Hart for the existence of a winning strategy for the statis-

tician.

The proof constructs a zero-sum game played between the statistician and

Nature. Each will have a finite number of strategies and so the mini-max

theorem will hold. Fix at n the number of times to be forecast. In order

that the statistician’s strategy space is finite, we restrict him to picking one

of the following as a forecast: 0, 1/k, 2/k, . . ., 1. Here k is some sufficiently

large integer that will be chosen later. A pure strategy for the statistician

consists of an n-vector of such forecasts. Thus his strategy space consists of

(k + 1)2n−1 pure strategies. Nature’s strategy space is then the set of all 2n

binary strings.2

Now suppose that Nature has to pick her strategy first. To achieve her

minimax value she will randomize among her choice of pure strategies. We

can now assume that the statistician knows the randomization policy that

Nature will follow. To use the minimax theorem we now need to specify a

strategy for the statistician which will keep his loss below ε. If we can do

2Technically, Nature has 2n strategies only if we assume that Nature is an oblivious

adversary. If Nature is an adaptive adversary, her strategy space is much larger since her

strategy in each round can depend on what she saw in the previous rounds. In this case

she has 2
(k+1)n−1

k strategies. Nevertheless, the argument is the same.
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this for all possible strategies of Nature then there must exist a strategy for

the statistician which will guarantee him a loss below ε.

How should the statistician behave if he knows what random policy Na-

ture will follow? At each point in time he can compute the conditional

probability of the next item in the sequence. He can then round this prob-

ability to the nearest i/k value, which he then forecasts. If we assume that

k is much less than n1/3, his calibration score will be less than 1/k with

high probability. Here is an outline of why this must be so. The forecaster’s

calibration score is

Ct(F,X) =
k∑
j=0

{ρt(j/k;X,F )− j/k}2nt(j/k;F,X)

t
.

Now consider all the times on which the statistician forecast j/k. He did so

because the probability that Nature would pick a 1 on that round was some

number q such that |q − j/k| ≤ 1/2k. By a law of large numbers type of

argument we would expect then that |ρt(j/k;X,F )− j/k| ≤ 1/2k. Hence

Ct(F,X) ≤
k∑
j=0

(1/k)2nt(j/k;F,X)

t
= O(1/k).

Thus there exists a strategy which will guarantee him a win. The drawback

is that determination of the strategy is impractical in that it requires the
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solution of an enormous linear program. In the next section we describe a

different and more efficient way of constructing an ε-calibrated forecast.

5 Constructing an ε-Calibrated Forecast

In this section we describe a forecasting algorithm that we subsequently show

to be ε-calibrated.

In round t the algorithm randomly selects one element from the set

A = {0, 1
k
, 2
k
,. . .,k−1

k
, 1} according to the distribution µt. We shall find a

distribution µt over the set A such that the random forecast F which fore-

casts ft = i
k

with probability µit will be ε-calibrated. These µit may be history

dependent.

First define the Expected Brier Score for a randomized forecast, to be

EBSt(F,X) ≡
t∑

s=0

k∑
i=0

µis(Xs − i
k
)2

t

This score is averaged over the randomization of the forecast (i.e. µt) but not

over the data X, making it a “prequential expectation” ( Dawid 1984, 1993).

Define a new random forecast F i→j to be exactly the same as F except that

whenever F makes a forecast of i
k
, F i→j makes a forecast of j

k
. It might

happen that F i→j has a lower expected Brier score than F and hence it is
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a better forecast than F . When this happens, the difference in their Brier

scores is called the regret of changing i
k

to j
k
.

Definition (Regret) Define the regret of changing i
k

to j
k

to be:

Ri→j
t ≡ t{EBSt(F,X)− EBSt(F

i→j, X)}+,

where (x)+ is the positive part of x. In other words, if we define Sijt to be the

signed difference in the Brier score, namely,

Sijt =
t∑

s=1

µis
(
Xs − i

k

)2
−

t∑
s=1

µis
(
Xs − j

k

)2
, (1)

then the regret from changing i
k

to j
k

is:

Ri→j
t =


Sijt if Sijt > 0

0 otherwise

In Theorem 3 we show that the calibration score of F is closely related

to the maximal regret: in particular,

Ct(F,X) =
∑
i

max
j

Ri→j
t

t
+O(1/k2).

We pick our distribution µt so that it satisfies the following conservation

condition for all i:

∑
j 6=i

µjtR
j→i
t−1 = µit

∑
j 6=i

Ri→j
t−1 . (2)

Theorem 1 A randomized forecast using the µt defined by equation (2) with

k ≈ 1/ε2 is an ε-calibrated forecast.
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We prove this theorem in the next section. The remainder of this section

is devoted to showing that the algorithm is well defined. For convenience we

supress the dependence on t. Let A be a matrix with elements

aij = Rj→i (3)

for all i 6= j, and

aii = −
∑
j 6=i

Ri→j. (4)

Note that the row sums of A are all zero. Equation (2) is equivalent to

Ax = 0. We need to show that system Ax = 0 admits a non-trivial and

non-negative solution, which can be normalized to turn it into a probability

vector.

Let A′ be the matrix with elements a′ij = aij/B, where B = maxi,j |aij|.

Note that |a′ij| ≤ 1 and
∑
i a
′
ij = 0. Let P = A′ + I. Then, P will be a non-

negative row-stochastic matrix. Hence there is a non-negative probability

vector x such that Px = x: since we do not require that x be unique, we do

not need any restrictions on the matrix P . Since P = A′+ I we deduce that

A′x+ Ix = x ⇒ A′x = 0 ⇒ Ax = 0

The vector x gives the required distribution, and, it can easily be found by

Gaussian elimination.
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6 Proof that the algorithm works

As F is essentially fixed, we can for convenience suppress the dependence on

F in our notation. We write nt(p), ρt(p) and Ct for nt(p;F,X), ρt(p;F,X)

and Ct(F,X) respectively. The proof divides into two steps. In the first

step we show that Ct can be closely approximated by something akin to its

average value. To this end define modified versions of n, ρ and C as given in

Table 1.

Base definitions Modified definitions

nt(
i
k
) ≡

t∑
s=1

I
ft=

i
k

ñt(
i
k
) ≡

t∑
s=1

µis

ρt(
i
k
) ≡

t∑
s=1

I
f̂t=

i
k

Xs

nt(
i
k
)

ρ̃t(
i
k
) ≡

t∑
s=1

µisXs

ñt(
i
k
)

Ct ≡
k∑
j=0

nt(
j
k
)

t

(
ρt(

j
k
)− j

k

)2
C̃t ≡

k∑
j=0

ñt(
j
k
)

t

(
ρ̃t(

j
k
)− j

k

)2

TABLE 1

Note that nt(
i
k
) − ñt( ik ), and ρt(

i
k
)nt(

i
k
) − ρ̃t( ik )ñt(

i
k
) are both martingales.

This allows us to approximate Ct by C̃t, as follows

Theorem 2 Ct − C̃t → 0 in probability as t→∞.
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Proof: The function C(·), defined by

C(a0, a1, . . . , ak, b0, b1, . . . , bk) =
k∑
j=0

aj

(
bj
aj
− j

k

)2

is a continuous function over the compact set 0 ≤ bi ≤ ai ≤ 1, it is uniformly

continuous. We can rewrite Ct and C̃t as

Ct = C
(
nt(0)

t
,
nt(

1
k
)

t
, . . . ,

nt(1)

t
,
ρt(0)nt(0)

t
,
ρt(

1
k
)nt(

1
k
)

t
, . . . ,

ρt(1)nt(1)

t

)

C̃t = C
(
ñt(0)

t
,
ñt(

1
k
)

t
, . . . ,

ñt(1)

t
,
ρ̃t(0)ñt(0)

t
,
ρ̃t(

1
k
)ñt(

1
k
)

t
, . . . ,

ρ̃t(1)ñt(1)

t

)
.

It is sufficient to show that the differences in the arguments converge to zero

in order to establish that Ct − C̃t converges to zero.

Since nt(
i
k
) − ñt( ik ), and ρt(

i
k
)nt(

i
k
) − ρ̃t( ik )ñt(

i
k
) are both counting pro-

cesses, their jumps are bounded by 1, and hence the variance of the jumps

are trivially bounded by 1. In other words,

var[{nt( ik )− ñt( ik )} − {nt−1(
i
k
)− ñt−1(

i
k
)}] ≤ 1

var[{ρt( ik )nt(
i
k
)− ρ̃t( ik )ñt(

i
k
)} − {ρt−1(

i
k
)nt−1(

i
k
)− ρ̃t−1(

i
k
)ñt−1(

i
k
)}] ≤ 1,

which leads to

var{
nt(

i
k
)− ñt( ik )

t
} ≤ 1/t

var{
ρt(

i
k
)nt(

i
k
)− ρ̃t( ik )ñt(

i
k
)

t
} ≤ 1/t.
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Since L2 convergence implies convergence in probability, we see that Ct −

C̃t → 0 in probability. If almost sure convergence is desired, it will follow

from a similar argument using 4th moments. 2

In the second step we show that this ‘average’ calibration score goes to

zero with t. This is done by using the regret to bound the average calibration

score and then proving that the regret is asymptotically small. There is a

technical difficulty to be overcome. Regret as we have defined it is a function

of the form max{x, 0}, giving it a ‘kink’ at zero. To smooth away this

kink we introduce a function gδ that is differentiable at 0 and approximates

max{x, 0}.

Define

R̃δ
t ≡

∑
i,j

gδ(R
i→j
t ),

where

gδ(x) ≡


δx2

2
x ≥ 0

0 x ≤ 0.

(5)

Note that gδ(R
i→j
t ) = gδ(S

ij
t ), where Sijt is defined by equation (1).

Theorem 3 The calibration score is related to the regret by

∑
i

max
j
Ri→j ≤ tC̃t ≤

∑
i

max
j
Ri→j +

t

4k2
≤ R̃δ

t +
k

2δ
+

t

4k2
.
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Proof: First note that

Sijt =
2(j − i)

k

t∑
s=1

µis

(
Xs −

i
k

+ j
k

2

)

=
2(j − k)ñt(

i
k
)

k

(
ρ̃t(

i
k
)−

i
k

+ j
k

2

)

= ñt(
i
k
){ρ̃t( ik )− i

k
}2 − ñt( ik ){ρ̃t( ik )− j

k
}2.

Thus,

ñt(
i
k
){ρ̃t( ik )− i

k
}2 = Sijt + ñt(

i
k
){ρ̃t( ik )− j

k
}2

≥ Sijt ≥ max
j
Sijt = max

j
Ri→j
t .

Now summing over both sides provides the first inequality.

For the second inequality observe that the maximum regret occurs at the

point where ñt(
i
k
){ρ̃t( ik )− j

k
}2 is smallest. Thus

ñt(
i
k
){ρ̃t( ik )− i

k
}2 = max

j

(
Sijt
)

+ min
j
ñt(

i
k
){ρ̃t( ik )− j

k
}2

≤ max
j

(
Sijt
)

+
ñt(

i
k
)

4k2
.

Summing over i provides the second inequality.

Since 1/(2δ) + gδ(x) ≥ x we see that

max
j
Ri→j ≤ 1

2δ
+ max

j
gδ(R

i→j) ≤ 1

2δ
+
∑
j

gδ(R
i→j),

and summing over i leads to the last inequality. 2
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Theorem 4 For the µt defined in equation (2), R̃δ
t ≤ tkδ

Proof: Note that gδ(x+α)− gδ(x) ≤ δα(x)+ + δα2. Define Ljt ≡ (Xt− j
k
)2,

so that Sijt = Sijt−1 + µit(L
j
t − Lit). Since,

gδ(S
ij
t )− gδ(Sijt−1) ≤ δµit(L

j
t − Lit)R

i→j
t−1 + δ(µit)

2(Ljt − Lit)2

we obtain:

R̃δ
t − R̃δ

t−1 =
∑
i,j

{
gδ(S

ij
t )− gδ(Sijt−1)

}
≤ δ

∑
i,j

{
µitL

i
t − µitL

j
t

}
Ri→j
t−1 +

{
µitL

i
t − µitL

j
t

}2
.

¿From equation (2) we see that

∑
i,j:i 6=j

{
µitL

i
t − µitL

j
t

}
Ri→j
t−1 =

∑
i

Lit

∑
j

µitR
i→j
t−1 − µ

j
tR

j→i
t−1

 = 0,

where the equality follows by interchanging the dummy arguments i and j.

Thus,

R̃δ
t − R̃δ

t−1 ≤ δ
∑
i,j

{
µitL

i
t − µitL

j
t

}2

≤ δ
∑
i,j

(µit)
2 = δk

∑
i

(µit)
2

≤ δk,

which gives R̃δ
t − R̃δ

0 ≤ tkδ. However, we know that R̃δ
0 = 0 so that R̃δ

t ≤ tkδ.

2

23



Combining Theorems 1-4 yields the following obvious but technical corol-

lary.

Corollary For all ε > 0, if k > ε−1/2 and t0 > 8k2/(ε), then, for all t ≥ t0

we have that C̃t ≤ ε. Further, there exists a t1 > t0 such that for all t ≥ t1,

pr(Ct < ε) ≥ 1− ε.

With care, ε can be chosen to be O(t
−1/3
0 ). Theorem 1 now follows directly

from this corollary.

Theorem 1 can be strengthened to almost sure convergence. We sketch

the argument here. First run a 2−i-calibrated algorithm for a ‘long time’

and then switch to a 2−(i+1)-calibrated algorithm. Repeat indefinitely. The

hard part is defining what a ‘long time’ means. It must be sufficiently long

such that each stage has a probability of at most 2−i of ever being above

2−(i−1). It also must be sufficiently long that we can amortize the ‘phase in’

period of the 2−(i+i)-calibrated algorithm. Combining this with the almost

sure version of Theorem 2 yields a non-constructive proof of the existence of

an algorithm such that Ct → 0 almost surely.
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7 Forecasting With Distributions

Suppose that, instead of making a point forecast ft of the probability that

Xt = 1, we forecast a distribution µt(). For example, suppose some sort of

hierarchical model is considered such that there is a parameter pt for each

time t. Then we could think of a posterior for pt, i.e. a distributional forecast

of a binary event. Clearly, the definition of calibration must be generalized

if it is to be applied to a distributional forecast. A reasonable definition of

ρt() is

ρt(p;X) =

∑
s≤t

dµs(p)Xs∑
s≤t

dµs(p)
.

Hence, if µ is a distributional forecast, its calibration with respect to X after

n periods is

CT (µ,X) =
1

T

T∑
t=1

∫ 1

0
{ρt(p)− p}2dµt(p).

Note that, if the distributional forecast is a degenerate one, i.e. a point

forecast, the definition of calibration reduces to the one given earlier in the

paper. Given what we know about deterministic point forecasts, we can

assert that some distributional forecasts are not calibrated.

Any randomized point forecast can be viewed as a distributional forecast.

If this is done, the calibration score is exactly C̃t, as defined in section 6.
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Simply treat the randomization at each period as the distribution being fore-

cast. In this case the calibration of the distributional forecast is a number,

in contrast to the calibration of the associated randomized point forecast,

which is a random variable. This observation yields the following corollary

to Theorems 1-3.

Corollary There is a distributional forecast µ() such that, for all X and

ε > 0, Ct(µ,X) ≤ ε for all t sufficiently large.

If we think of µt() as a posterior distribution for pr(Xt = 1), then we can

combine Oakes’ (1985) result with the corollary to conclude that a posterior

mean might not be calibrated for all X but that there are some posterior

distributions that are always calibrated. Thus, in terms of calibration, the

posterior distribution is a better statistic than the posterior mean.

8 Discussion

Our goal in this paper has been to rescue the notion of calibration. We

have done this by generalizing the original definition of calibration offered by

Dawid to allow for randomized forecasts. Further, we have shown that this

weakened definition is not vacuous, by exhibiting a forecasting scheme that
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satisfies it.

The scheme we propose, while ε-calibrated, achieves this at the cost of

a higher Brier score. To see why, consider the forecast that at each round

forecasts
∑k
j=1 µ

j
t . By the convexity of the Brier score, this forecast will have

a Brier score that is smaller than the expected Brier score of the randomized

forecast that uses the distribution µt.

While this paper was under review a number of other researchers have

been moved to find alternative proofs of our main result. One of these ap-

proaches, due to Sergiu Hart, we have already described. A constructive

version of Hart’s proof has been derived independently by Drew Fudenberg

and David Levine. They view each step to be forecast as a game and then

use the minimax theorem to compute the value of that step. Sergiu Hart

and Andreu Mas-Colell have recently shown that our Theorem 4 is a corol-

lary of David Blackwell’s (1956) approachability theorem and so provide an

alternative proof that our algorithm will in fact be ε-calibrated.

27



9 Acknowledegments

We thank A. P. Dawid, Arnold Zellner, Daniel Nelson and the referees for

some useful comments a number of which have been incorporated into this

paper.

REFERENCES

BLACKWELL, D. (1956). An analog of the minimax theorem for vector

payoffs. Pacific J. of Math. 6, 1-8.

BLATTENBERGER, G. and LAD, F. (1985). Separating the Brier score

into calibration and refinement components: A Graphical Exposition. The

American Statistician, 39, 26 - 32.

BRIER, G. W. (1950). Verification of forecasts expressed in terms of

probability. Monthly Weather Review, 75, 1-3.

COVER, T. (1991). Universal portfolios. Mathematical Finance, 1-29.

DAWID, A. P. (1982). The well calibrated Bayesian. J. of The Am. Stat.

Assoc. 77, 605-13.

DAWID, A. P. (1984). Statistical theory, the prequential approach. JRSS

A, 147, part 2, pp. 278 - 92.

28



DAWID, A. P. (1985). The Impossibility of inductive inference. J. of The

Am. Stat. Assoc. 80, 340-41.

DAWID, A. P. (1993). Prequential data analysis. in M. Ghosh and P.

Pathak, editors, Current issues in statistical inference: essays in honor of

D. Basu,, volume 17, 113–26, IMS lecture Notes Monograph Ser., Hayward,

CA.

HANAN, J. (1957) Approximation to bayes risk in repeated plays. in M.

Dresher, A.W Tucker and P. Wolfe, editors, Contributions to the Theory of

Games of Games, volume 3, 97-139, Princeton University Press, 1957.

FEDER, M., MEHRAV, N. & Gutman M. (1992) Universal prediction of

individual sequences. IEEE Trans. on Information Theory, 38, 1258-70.

FOSTER, D. P. (1991). A worst case analysis of prediction. Annals of

Stat. 21, 625 - 44.

FOSTER, D. P. and VOHRA, R. (1993). A randomization rule for se-

lecting forecasts. Operations Research, 41, 704 - 09.

FREUND, Y. and SCHAPIRE, R. (1995) A decision-theoretic general-

ization of on-line learning and an application to boosting. Proceedings of the

Second European Conference on Computational Learning Theory, Springer-

Verlag, 23 - 37, 1995.

29



HANAN, J. (1957) Approximation to bayes risk in repeated plays. in M.

Dresher, A.W Tucker and P. Wolfe, editors, Contributions to the Theory of

Games of Games, volume 3, 97-139, Princeton University Press, 1957.

LITTLESTONE, N. & WARMUTH, M. (1994) The weighted majority

algorithm. Information and Computation, 108, 212-61.

MURPHY, A. H. (1972). Scalar and vector partitions of the probability

score. Part I: Two-State situation. Journal of Applied Meteorology, 11, 273

- 78.

MURPHY, A. H. (1973). A new vector partition of the probability score.

Journal of Applied Meteorology, 12, 595 - 600.

MURPHY, A. H. and EPSTEIN, E. (1967). Verification of probabilistic

predictions: A brief review. Journal of Applied Meteorology, 6, 748-55.

OAKES, D. (1985). Self-Calibrating priors do not exist. J. of The Am.

Stat. Assoc. 80, 339.

SCHERVISH, M. (1985). Comment on paper by Oakes. JJ. of The Am.

Stat. Assoc. 80, 341-42.

VOVK, V. (1990) Aggregating Strategies. Proceedings of the 3rd Annual

Conference on Computational Learning Theory, Morgan Kaufmann Publish-

ers, San Francisco, CA., 71-83.

30


