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Abstract

We offer two noiseless codes for blocks of integers Xn = (X1, . . . , Xn). We provide

explicit bounds on the relative redundancy that are valid for any distribution F in the

class of memoryless sources with a possibly infinite alphabet whose marginal distribu-

tion is monotone. Specifically we show that the expected code length L(Xn) of our

first universal code is dominated by a linear function of the entropy of Xn. Further,

we present a second universal code that is efficient in that its length is bounded by

n HF + o(n HF ), where HF is the entropy of F which is allowed to vary with n. Since

these bounds hold for any n and any monotone F we are able to show that our codes

are strongly minimax with respect to relative redundancy (as defined by Elias).

Key Phrases: Universal noiseless coding of integers, Elias codes, Wyner’s inequality,

relative redundancy, strongly minimax.

∗Version Id: blockCode.tex,v 1.31 2001/10/24 16:06:28 bob Exp

1



Universal Codes (May 31, 2002) 2

1 Introduction

Consider the problem of lossless compression of a finite collection of n positive integers

Xn = (X1, . . . , Xn) into a prefix code of shortest expected length. The Xi ≥ 1 are inde-

pendent, integer-valued random variables that share a common, unknown probability

distribution F which is assumed monotone, meaning that PF (X = i) = pi ≥ pi+1, i =

1, 2, . . ., and PF (X > 0) = 1. We will denote the set of all monotone distributions with

finite entropy as M. For F ∈M, all Xi = 1 when the entropy

HF = −
∑

i

pi log pi

is 0.

We wish to encode Xn as efficiently as possible, regardless of the entropy HF .

Given F , one can construct an arithmetic coder whose code length LF (Xn) is on

average within one bit of the minimum attainable length,

n HF ≤ E LF (Xn) ≤ 1 + n HF .

If F is unknown, we seek a universal code whose loss relative to this utopian perfor-

mance is bounded. The usual way (see definition 3 of [1]) to evaluate such codes is to

show that the average redundancy goes to zero, namely to show that

lim
n→∞

E L(Xn)− n HF

n
= 0 (1)

for every distribution F in a class C. If the members of C satisfy (1) for some code,

then C is said to be weakly universally encodable in the sense of Davisson. Györfi, Páli,

and van der Meulen [5] show that, without restrictions on the class C of memoryless

sources, such a code does not exist. They prove that universal codes are impossible

even in this weak sense for infinite alphabet memoryless sources, even those restricted

to finite entropy. However, under the additional assumption of monotonicity Elias [2]

shows that universal codes do exist. Györfi et al [4] extend this result to an even

larger class of memoryless distributions with finite entropy. Such results, however,

do not imply how well the code performs for finite values of n. Unless we know the

distribution F , we do not know if the particular n we are considering is large enough

for the limit to be useful. What is hoped for is that the class M is strongly universally
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encodable in the sense of Davisson:

lim
n→∞

sup
F∈M

E L(Xn)− n HF

n
= 0 . (2)

Strong universality implies a uniform bound on the redundancy. The following lemma

(proved in the appendix) shows that, for monotonic distributions, this is impossible:

Lemma 1 For any prefix code with length L,

(∀n) sup
F∈M

E L(Xn)− n HF

n
= ∞.

Because one cannot uniformly bound the per-symbol redundancy, we consider a

different measure of performance for which one can obtain a uniform bound, even for

distributions on infinite alphabets. Some notation is needed to describe our results.

Elias [2] measures the performance of a prefix code as the ratio of its expected code

length to the minimum attainable length,

Rn(L,F ) =
E L(Xn)

max(1, n HF )
. (3)

Since Rn quantifies the performance of a code in relative terms with respect to the

entropy we will sometimes call Rn the relative redundancy. A code with length function

L(Xn) is universal in the spirit of Elias [2, page 201] for some class of distributions F

if the relative redundancy is bounded,

L is universal for F ⇐⇒ ∀n sup
F∈F

Rn(L,F ) ≤ cn < c < ∞ . (4)

A universal code guarantees a level of performance, but that performance may not be

very good. To address the performance of a code, we say that the code with length

L(Xn) is efficient if its expected code length grows only slightly faster than the best

possible,

L is efficient ⇐⇒ E L(Xn) ≤ nHF + g(n HF ) , (5)

where the remainder g is a given sublinear function not depending on n or F ,

lim
x→∞

g(x)
x

= 0 .

Combining these aspects, an efficient universal code guarantees not only uniform per-

formance but also short codes. In Theorem 3, we prove the existence of an efficient

universal code for the class M.
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The ratio criterion Rn is more restrictive than the usual redundancy for sources of

low entropy. If HF > 1, the ratio criterion Rn is weaker than the usual redundancy.

When the entropy is small, however, the ratio criterion is more strict. As an example,

consider a Lempel-Ziv coder; its relative redundancy converges to zero for a wide class

of sources, including finite-alphabet, memoryless sources. Suppose the data Xn is

generated i.i.d. from distribution F on (1, 2) with p1 = 1− 1/n and p2 = 1/n. When

encoding Xn, the LZ coder will create a collection of code words for strings of zeros,

with about
√

n code words each representing a longer string of zeros than the previous.

So, to code the entire sequence, the LZ coder will take about (1
2 log n)

√
n bits. The LZ

coder does well in the usual sense of redundancy in this case since n HF ≈ log n and its

code length is o(n). In terms of the relative criterion Rn, however, the LZ coder does

poorly (Kosaraju and Manzini [6] discuss the fact that it performs poorly for sources of

lower entropy). A good code would use about log n bits whereas the LZ code is longer

by a factor of
√

n. If sources from a wide range of entropies are considered, simply

achieving a bounded ratio can be a challenge.

The rest of this paper develops as follows. For coding a monotone source, we show

in Section 2 that that it is possible to encode Xn so that the length of the prefix code

is bounded in expectation by a linear function of the entropy of the source,

(∀n > 0, ∀F ∈M) E L(Xn) ≤ c0 + c1 n HF , (6)

where the constants c0 and c1 > 1 are invariant of n and F . The lower bound for c1 is

a consequence of Lemma 1. From (6) it follows that such a code is universal since

Rn(L,F ) ≤ c0 + c1 .

This code is a simple modification of the concatenation of scalar universal codes. It

produces a universal code with c0 = 3 and c1 = 9
2 . Surprisingly, the only modification

is the optional compression of the leading bits of each universal code so that the code is

competitive when the source entropy is near 0. Following in Section 3, we extend this

approach significantly to produce an efficient universal code for monotone sources with

arbitrary entropy. Our main result (Theorem 2) finds an efficient code whose expected

length satisfies the following bound:

(∀n > 0,∀F ∈M) EL(Xn) ≤ n HF +
(

20 + 10
n HF log log(n HF )

log(n HF )

)
.
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A slightly modified version of the efficient code is strongly minimax in the sense that

(Corollary 2)

lim
n→∞

sup
F∈M

EL(Xn)− (nHF + 1)
nHF

= 0 .

Universal codes for integers are well-known. A particularly good example of these

for sources of large entropy is the “penultimate” code, denoted by ω in Elias [2]. (See

[4] and [5] for extensions of Elias.) This procedure encodes the positive integer x ≥ 1

with an idealized length

Lω(x) = cω + log x + log log x + · · · ,

where the log (base 2) terms are accumulated while positive and cω ≈ 2.865 (see [8]).

The penultimate code is universal in the sense of (6) because its expected length is

bounded by a linear function of the entropy: for X ∼ F [2],

(∀F ∈M) E Lω(X) ≤ 1 + 5
2 HF . (7)

The penultimate code is also asymptotically optimal as defined in [2]. When coding one

integer from a monotone distribution of large entropy, the length of the penultimate

code approaches the entropy in the sense of the limit

lim
HF→∞

E Lω(X)
HF

= 1 . (8)

The concatenation of scalar universal codes does not automatically produce a uni-

versal code for a block of several integers. The weakness occurs when coding sources

of small entropy. In the extreme case when HF = 0 and all Xi = 1, the accumulation

of symbols for each Xi implies that the total length is proportional to n. For example,

the penultimate code for Xi = 1 is a single 0 bit, so the code for Xn is a sequence

of n consecutive zeros. For coding such sequences of low entropy, Elias [2] proposes a

recursive procedure that is optimal in the limit as n and n HF increase. His procedure,

however, requires that one assume a positive lower bound on the source entropy. The

code described below avoids this condition. It is both universal and asymptotically op-

timal as the entropy grows. The coding procedure makes use of two codes for integers,

the penultimate code and the unary code. The unary code for the integer x ≥ 1 is a

sequence of x− 1 zeros followed by a single 1:

U(x) =


1 , x = 1 ,

0 · · · 0︸ ︷︷ ︸
x−1

1 , otherwise.
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Table 1: Each member of Xn is represented as a column of bits in the ragged array U of

unary codes for the input sequence Xn.

Xn 5 1 3 1 2

u1 0 1 0 1 0

0 0 1

0 1

0

1

To construct a universal code for Xn, we begin by forming a ragged array U of n

columns with a varying number of rows. The columns of U are the unary codes for Xi

stacked side-by-side, as in Table 1 (which mimics that of Elias [2]). As shown in the

table, the first row of U holds the leading bits of the sequence of unary codes, which

we denote U1 = (U11, . . . , U1n) with Uri denoting the rth element in the unary code for

Xi. The sum

N1 =
∑

i

U1i

of the elements in this first row counts the number of Xi = 1. When subtracted from

n,

Y = n−N1 (9)

counts the number of “large” Xi > 1. Because of the monotonicity of F , if the source

entropy is small, then Y will also be small.

We obtain a universal code from this array by optionally compressing the leading

bits U1 from the first row of U , with the remaining bits encoded as a sequence of

universal codes. It was surprising to us that such a simple adjustment produces a code

that bounds the ratio (6) for a monotone source of arbitrary entropy. To be more

specific about the code, we encode the leading bits U1 in two parts. First, we encode

the count of large values as ω(Y ). The positions of the zeros in U1 identify those Xi > 1

requiring further encoding. We represent these locations using 1 + b log
(n
y

)
c bits and

encode the remaining bits as the concatenation of the universal codes ω(Xi − 1) for

those Xi > 1. The length obtained in this fashion is then compared to the length of
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a direct concatenation of universal codes, with the shorter format adopted. A leading

bit denotes the adopted format. The total length of the code for Xn is thus

L(Xn) = 1 + min(1 + log

(
n

Y

)
+ Lω(Y ) +

∑
i:Xi>1

Lω(Xi − 1),
n∑

i=1

Lω(Xi)) . (10)

The efficient universal code described in the following section extends this scheme by

varying the number of rows of U that are encoded in this fashion.

Our proof that E L(Xn) satisfies (6) concentrates on the low entropy setting. Cases

of relatively high entropy can be handled easily using the results of Elias [2]. We state

our claim along with the qualifying assumptions as

Theorem 1. Let Xn = (X1, . . . , Xn) denote a sequence of iid, integer-valued random

variables Xi ≥ 1 following a monotone probability distribution F having entropy HF .

Then the expected length of the proposed coding procedure is linearly bounded by the

entropy with c0 = 3 and c1 = 9
2 . In other words,

(∀n > 0,∀F ∈M) E L(Xn) ≤ 3 + 9
2 n HF . (11)

Proof. First consider cases with n = 1, 2, or 3. There is little value in such cases for

considering the compression of U1, so encode the data using a universal code for each

Xi. From (7), it follows that for n ≤ 3 that

E L(Xn) ≤ n
(
1 + 5

2HF

)
≤ 3 + 5

2 n HF .

Now consider larger blocks with n ≥ 4. We split these into two categories, those with

“high” entropy HF ≥ 1/2 and the rest with “low” entropy. For HF ≥ 1/2, we can

ignore the option to compress U1 and bound the length as

E L(Xn) ≤ 1 + n E L(X1) ≤ 1 + n (1 + 5
2HF ) ≤ 1 + 9

2 n HF ,

so that (11) holds.

For cases with “low” entropy HF < 1/2, the proof of (11) works by decomposing the

total entropy H(Xn) into terms that can be matched to summands in the expression

(10) for the code length. For this, we require two lemmas that are proved in the

appendix. For the rest of this section we overload our notation for the entropy and

let H(X) denote the entropy associated with the random variable X. The first lemma
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shows that a term in the entropy of a Bernoulli sequence dominates the mean of the

associated binomial count.

Lemma 2 Let Y ∼ Bi(n, p) denote a binomial random variable with parameters n ≥ 4

and p < 1/3. Then

E Y ≤ E log

(
n

Y

)
.

The second lemma establishes a property analogous to (7) for a binomial random

variable that does not satisfy the monotonicity condition.

Lemma 3 If Y ∼ Bi(n, p) with p < 1/3 and n ≥ 4, then the expected length of the

penultimate code for Y is dominated by a linear function of its entropy,

ELω(Y ) ≤ 2 + 2 H(Y ) . (12)

For Y defined as in (9), the assumption that HF < 1
2 implies both Lemma 2 and

Lemma 3 hold. To show that the conditions of the lemmas are satisfied, we decompose

H(Xn) into the entropy of a Bernoulli sequence and remaining terms. We first define

the indicators bn = (b1, . . . , bn) where

bi =

 0, Xi = 1

1, Xi > 1
.

Since bn = 1− U1, we note that Y =
∑

i bi. The bi are independent Bernoulli trials so

that Y ∼ Bi(n, P1) with

P1 = P (X > 1)

for X ∼ F . The assumed monotonicity of F implies that its entropy is bounded below

by

HF = E log
1
pi
≥ log

1
max pi

= log
1
p1

,

where pi = P (X = i). Consequently, because HF < 1/2, p1 is at least

p1 ≥ 2−HF >
1√
2

> .7 , (13)

and P1 < 0.3 so that Lemma 2 and Lemma 3 hold.
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We now match and compare the terms of the entropy (14) to those in the expected

code length (10) when the leading bits are compressed. The joint probability for Xn

can be written as

P (Xn) = P (Xn, bn, Y ) = P (Xn|bn, Y )P (bn|Y )P (Y ) ,

so that the total entropy is

n HF = H(Xn) = E Y H(X|X > 1) + E log

(
n

Y

)
+ H(Y ) , (14)

where X ∼ F , and H(X|X > 1) denotes the entropy of the conditional distribution of

X given X > 1. Using first Lemma 2 and then Lemma 3, we can bound the expected

length of the compressed version of the proposed code by 2 + 5
2n HF ,

2 + 5
2 n HF = 5

2E Y H(X|X > 1) + 5
2E log

(
n

Y

)
+ (2 + 5

2H(Y ))

≥ 5
2E Y H(X|X > 1) + E Y + 3

2E log

(
n

Y

)
+ (2 + 5

2H(Y ))

≥ E Y (1 + 5
2H(X|X > 1)) + E log

(
n

Y

)
+ E Lω(Y )

≥ E Y Lω(X|X > 1) + E log

(
n

Y

)
+ E Lω(Y ) .

With one bit added to allow for the option of compressing U1, we see that the expected

length satisfies (11).

It is easy to see that this coding procedure is asymptotically optimal, coding effi-

ciently for sources of large entropy. The argument exploits the asymptotic optimality

of the underlying penultimate code (8). In particular, holding n fixed and letting

HF →∞,

lim
HF→∞

E L(Xn)
nHF

≤ lim
HF→∞

1 + n ELω(X1)
n HF

= lim
HF→∞

E Lω(X1)
HF

= 1 .

2 An Efficient Universal Code

One can improve upon the previous universal code in the presence of greater entropy.

That code handles the case when n HF is small quite well. It leaves room for improve-

ment, however, as the entropy of the source grows. With more entropy present it be-

comes useful to not only compress the leading bits of the unary codes, but to compress
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subsequent “layers” as well. For example, suppose that P (Xi = 1) = P (Xi = 2) = 1
2

and n = 100 so that the entropy lower bound for a code is n HF = 100 bits. When

represented as the simple concatenation of penultimate codes, the expected code length

is 200 bits. Were it coded instead using the previous universal code with the one level

of compression, the expected length falls to 157 bits. Two levels of compression, as

shown next, reduce the expected length down to 108 bits. We show in this section

that a code that adaptively selects the degree of compression is both efficient as well

as universal. We summarize this result as

Theorem 2. There exists a uniquely decodable prefix code for Xn whose length function

L(Xn) satisfies

(∀n > 0,∀F ∈M) EL(Xn) ≤ 20 + nHF

(
1 + 10

log log(n HF )
log(n HF )

)
,

where we take log(log(x))/ log(x) to be zero for x ≤ 2.

Note: The pair of constants (20,10) in this theorem can be improved to (30,5) but we

do not provide a proof of this. The proof does show that for any positive ε, a pair can

be found of the form (c0(ε), 2 + ε).

Before proceeding to the proof, it is instructive to consider the application of a

universal source coding algorithm (such as LZ) after the application of the Elias penul-

timate code, for example. The application of the Elias code results in a binary sequence

for Xn with entropy nHF . Application of LZ results in a code with an expected length

of nHF bits and a redundancy that is o(n). This redundancy rate is not adequate.

No improvements can be made in this approach; while the stationary encoding of Xn

is still ergodic, it is not i.i.d. (or even finite memory). Thus there can be no further

specification of the rate at which LZ (any version) will converge to HF . When HF may

be arbitrarily small, the redundancy dominates and we must seek a different approach.

Proof (Theorem 2). Let m denote a fixed constant. As in the derivations of the

previous section, our proposed code separates the coding task into two parts: “small”

values for which Xi ≤ m and “large” values for which Xi > m. Expanding the notation

of the previous section, we let

Pm = P (Xi > m)

denote the probability of a “large value”. This decomposition follows the division of
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the entropy as

n HF = H(Xn) = H(Xn ∧ (m + 1)) + n Pm H(X1|X1 > m) . (15)

The collection of n “small” values Xn ∧ (m + 1) is handled using a multinomial coder.

The penultimate code is competitively optimal, for m sufficiently large, when applied

to the subset of Xi which are “large”. Values coded as m + 1 in the multinomial code

identify the positions of the “large” Xi.

Here are the details. Suppose, first, that a fixed integer m is chosen (independently

of Xn) and, along with n, is known to both the encoder and the decoder. (For the

universal code of Section 2, m = 0 or 1 as indicated by a leading flag bit.) Define the

counts

Nk =
n∑

i=1

1{Xi = k} , Sm =
m∑

k=1

Nk , and Bm = N − Sm.

Thus, Nk is the number of times that Xi equals k and Sm is the number of times that

Xi ≤ m, which is the size of the “small” set. Our encoder first specifies the multinomial

counts Nk for k = 2, . . . ,m and Bm. (For notational simplicity, let m ≥ 2.) Given

these counts, Xn ∧ (m + 1) is uniformly distributed,

P (Xn ∧ (m + 1) = xn|N2, . . . , Nm, Bm) =

(
n

N1 N2 · · ·Nm Bm

)−1

.

Thus we can encode Xn ∧ (m + 1) using on average at most

1 + E log

(
n

N1 N2 · · ·Nm Bm

)
≤ 1 + H(Xn ∧ (m + 1)|N1, . . . , Nm, Bm)

≤ 1 + H(Xn ∧ (m + 1)) bits.

To complete the multinomial portion of the code, we need to represent Nk and Bm;

a crude upper bound gives L(Nk) ≤ 2 + 2 log Nk. Taking this approach and using

Jensen’s inequality and the monotonicity of the source distribution F , the number of

bits to code the marginal counts N2, . . . , Nm and Bm is bounded by

m∑
k=2

E L(Nk) + E L(Bm) ≤ 2(m +
m∑

k=2

E log Nk + E log Bm)

≤ 2(m +
m∑

k=2

log ENk + log EBm)

≤ 2(m +
m∑

k=1

log(n Pk))

≤ 2m(1 + log(nP1)) .
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Thus, if L(Xn ∧ (m + 1)) is the total number of bits needed to encode the truncated

sequence Xn ∧ (m + 1), we have shown that

E L(Xn ∧ (m + 1)) ≤ 1 + H(Xn ∧ (m + 1)) + 2m(1 + log(nP1)) .

Note that we omit a code for N1 because it can be recovered from N1 = n−
∑m

2 Nk−Bm.

The encoder now faces the task of specifying those Xi > m. Recall that the position

of these values are denoted by those terms in the multinomial code with value m + 1.

Let Zk = Xik , k = 1, . . . , Bm denote this subsequence where Xi > m. We encode Zk

using a code whose expected code length L(Z1) satisfies [2]

E L(Z1) ≤ 1 + H(Z1) + log(1 + H(Z1)) .

Now nPm = E Bm is the expected number of Xi to be coded using the Elias code.

Thus, the total number of bits for parts one and two is bounded above by

E L(Xn) ≤ 1 + H(Xn ∧ (m + 1)) + 2m(1 + log(nP1))

+n Pm [1 + H(X1|X1 > m) + log(1 + H(X1|X1 > m)) ] .

The decomposition (15) implies that

E L(Xn) ≤ 1 + H(Xn) + 2m(1 + log(nP1)) + n Pm(1 + log(1 + H(X1|X1 > m)) .

We now consider the asymptotic behavior of Pm. First, let h(p) for 0 ≤ p ≤ 1

denote the Boolean entropy function. It is easy to prove the following decomposition

of the entropy which we state as

Lemma 4 The entropy H(X) of a random variable X may be partitioned as

H(X) = PmH(X|X > m) + (1− Pm)H(X|X ≤ m) + h(Pm) .

The monotonicity condition on the probabilities pi implies Wyner’s inequality [10]:

Lemma 5 If X ∼ F , then

E log(X) ≤ HF .
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A direct application of Markov’s inequality to Wyner’s inequality proves

Lemma 6 (Wyner-Markov) If X ∼ F and m is any positive integer, then

Pm = P{X ≥ m + 1} ≤ HF

log(m + 1)
.

The importance of Wyner-Markov (Lemma 6) is that it provides a simple bound on

the tail probability Pm in terms of the entropy.

To bound the remaining code length, we observe that Lemma 4 implies

H(X1|X1 > m) ≤ HF

Pm
.

It follows that

n Pm log (1 + H(X1|X1 > m)) ≤ n Pm log(1 + HF /Pm)

≤ n HF

log(m + 1)
log(1 + log(m + 1)) ,

where the second inequality holds because the function f(x) = x log(1 + c/x) is mono-

tone increasing in x for 0 < x ≤ 1.

Collecting together the terms and using Wyner-Markov again, we have shown the

bound

E L(Xn) ≤ 1+n HF +2m(1+log n HF )+
n HF

log(m + 1)
(1 + log(1 + log(m + 1))) . (16)

Let m = max(
√

nHF − 1, 1) and let x = nHF . If x ≤ 4, then m = 1 and we are using

the same code as in Theorem 1 so the bound EL(Xn) ≤ 3 + (9/2)x applies. For x > 4

we have the inequalities

log x > 2,

log log x > 1, and
log x√

x
− log x

x
≤ log log x

log x
.

From these, we have

EL(Xn) ≤ 1 + x(1 + 8
log log x

log x
) ,

and thus

EL(Xn) ≤

 1 + x(1 + 8 log log x
log x ) x > 4 ,

3 + 9/2x x ≤ 4 .
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Both bounds equal 21 bits at x = 4. Coding m takes at most 1 + log(1 + n HF ) bits.

So we have the universally true bound that

E L(Xn) ≤ 20 + n HF

(
1 + 10

log log nHF

log nHF

)
where log log nHF

log nHF
is taken to be zero if nHF < 2.

Corollary 1 The relative redundancy converges to zero for any sequence of ni and Fi

such that niHi →∞, where Hi is the entropy of the distribution Fi,

E L(Xni) = ni Hi + o(niHi) .

Thus, the relative redundancy goes to 0, asymptotically, as the minimum expected

number of bits goes to infinity. More precisely the rate can be expressed as

E L(Xni)
niHi

≤ 1 +
2 log log(niHi) + O(1)

log(niHi)
.

Proof. Dividing equation (16) by n HF to compute a relative redundancy, we find

E L(Xn)
n HF

≤ 1 +
1

n HF
+

2m(1 + log(n HF ))
n HF

+
1 + log(1 + log(m + 1))

log(m + 1)
.

With m =
√

n HF − 1, this reduces to

EL(Xn)
n HF

≤ 1 +
1

n HF
+

2(1 + log(n HF ))√
n HF

+
1 + log(log(n HF ))

(1/2) log(n HF )
.

Noting (log x)/
√

x = o(1/ log x) we get the result.

If we take the distribution to be constant, namely Fi = F , then the corollary shows

that our code is weakly minimax in the usual sense. Namely,

sup
F∈M

lim
n→∞

EL(Xn)− nHF

n
= 0.

We also obtain a rate which is a direct extension the results of [2] and [5].

Our goal now is to provide a firm upper bound on the code length for all sequences.

To obtain such a bound, we modify our algorithm slightly. We first send a flag bit

indicating if the sequence is all 1. If the sequence is non-trivial we compress using the

previous two-part code. In the appendix we prove that this modified code achieves the

following performance:
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Theorem 3. There exists a constant c and a uniquely decodable prefix code for Xn

whose length function L(Xn) satisfies

(∀n ≥ 16,∀F ∈M) E L(Xn) ≤ 1 + nHF

(
1 +

c log log log n

log log n

)
.

Corollary 2. The modified code is strongly minimax in the sense that

lim
n→∞

sup
F∈M

EL(Xn)− (nHF + 1)
nHF

= 0 ,

where we take 0/0 = 0 if HF = 0.

Appendix: Supplemental Proofs

Proof of Lemma 1: We prove Lemma 1 by establishing that for finite alphabets,

even if one knew more about the distribution than that it was monotone, one still

cannot create a uniform bound for the per-symbol redundancy. Define the class Sm as

consisting of the uniform distributions Uk on the integers 1, ..k, for all m ≥ k ≥ 1. Let

S =
⋃

Sm. Since S ⊂ M, the following implies Lemma 1: For any prefix code with

length L,

(∀n) sup
F∈S

E L(Xn)− n HF

n
= ∞.

To prove this, first note that for all n ≥ 1,

sup
F∈S

EL(Xn)− nHF ≥ sup
F∈S

EL(X1)−HF .

this converts the problem to the single dimensional case. We can now apply the

redundancy-capacity theorem (see for example [7]) to the family Sm by considering

a discrete memoryless channel Cm whose input and output are the integers 1, ..m. The

kth row of the channel matrix is the probability vector associated with distribution Uk,

namely

(1/k, 1/k, ....., 1/k, 0, 0, ..., 0) .

That is, we input the parameter k and output a random integer from Uk. The capacity

of Cm is well-known (see [9]) to be

Cm = log
m∑

k=1

(k − 1)k−1

kk
.
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Hence,

sup
F∈S

EL(X)−HF ≥ sup
m

Cm = ∞.

Lemma 2 Let Y ∼ Bi(n, p) denote a binomial random variable with parameters

n ≥ 4 and p < 1/3. Then

E log

(
n

Y

)
≥ E Y .

Proof. Let pk =
(n
k

)
pk(1− p)n−k and qk = 2kpk(1− p)n−k. So long as the qk define a

sub-probability function with Sn =
∑n

k=0 qk ≤ 1, the relative entropy D(p‖q) ≥ 0 and

thus
n∑

k=0

pk log

(
n

k

)
≥

n∑
k=0

pk log 2k = EY . (17)

To show that Sn ≤ 1, write the sum of the qk as

Sn = (1− p)n
n∑

k=0

(
2p

1− p

)k

= (1− p)n

1−
(

2p
1−p

)n+1

1− 2p
1−p


=

(1− p)n+1 − (2p)n+1

1− 3p
. (18)

We first show that S4 ≤ 1 and continue by induction. The lemma also holds for n = 3,

but that situation requires a different proof. (It fails for n = 1, 2.)

For n = 4, notice that the numerator in the fraction of (18) clearly has a root at

1/3, so that the denominator can be canceled. This gives

S4 = 1− 2p + 4p2 + 2p3 + 11p4 .

With w = 3p, the ratio

S4 − 1
p

=
11w3 + 6w2 + 36w − 54

27

is negative for 0 ≤ w ≤ 1 because 53 < 54. Thus S4 ≤ 1 for 0 ≤ p ≤ 1/3. For the

induction, it follows that for n ≥ 4,

Sn+1 = (1− p)Sn + (2p)n+1

≤ (1− p) + (2p)n+1
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≤ 1 .

The final inequality holds because 2(2p)2 ≤ 1 implies that (2p)n+1 ≤ p, again for n ≥ 4.

Lemma 3. If Y ∼ Bi(n, p), then for p < 1/3 and n ≥ 4, the expected length of the

penultimate code for Y is dominated by a linear function of the entropy H(Y ),

2 + 2 H(Y ) ≥ ELω(Y ) . (19)

Proof. Define pi = P (Y = i) =
(n

i

)
pi(1 − p)n−i. Because pi+1/pi = p(n − i)/((1 −

p)(i + 1)), the maximum of the binomial density occurs at x = bnp c or x = 1 + bnp c.

The entropy is then at least

−E log PY (Y ) ≥ −E log max
i

pi

= −max(log px, log px+1)

≥ − log max

((
n

x

)
(p̂0)x(1− p̂0)n−x,(
n

x + 1

)
(p̂1)x+1(1− p̂1)n−x−1

)
, (20)

where p̂0 = x/n and p̂1 = (x + 1)/n are the possible maximum likelihood estimates for

p. This expression simplifies because the maximum of these two functions is always

the first term, for these values of n and p. To show this, we need the following upper

bound for the natural log function,

loge(1 + δ) ≤ δ − c δ2, −1 ≤ δ ≤ 1 , (21)

with the constant c = 1− loge 2 chosen to achieve equality for x = 1. This expression

then gives a bound on the ratio of the functions in (20). After canceling numerous

terms, we see that the log of the ratio of density functions is negative,

loge

( n
x+1

)
p̂x+1
1 (1− p̂1)n−x−1(n

x

)
p̂x
0(1− p̂0)n−x

= x loge

(
1 +

1
x

)
+ (n− x− 1) loge

(
1− 1

n− x

)
≤ x

(
1
x
− c

x2

)
+ (n− x− 1)

( −1
n− x

− c

(n− x)2

)
=

(
1

n− x
− c

x

)
+

c

n− x

(
1

n− x
− 1

)
≤ 0 ,

because both summands are negative. The first summand is negative for small values

of x in the range,

x <
cn

1 + c
≈ .4n ,
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containing the values covered by this lemma. To complete the proof of the lemma, we

need to cover the case x = 0 separately. In this case, we obtain the trivial lower bound

H(Y ) ≥ 0. For x > 0, we use Stirling’s approximation,

log k! = k log k − k log e + 1
2 log(2πk) + εk ,

with an error term of the form log e
12k+1 < εk < log e

12k [3]. Substituting this expression for

the log factorials and canceling, we find that the entropy of Y is bounded below by

H(Y ) ≥ − log

(
n

x

)
p̂x
0(1− p̂0)n−x

= 1
2 log np̂0(1− p̂0) + 1

2 log 2π + (εx + εn−x − εn)

> 1
2 log np + 1

2 log
p̂0

p
+ 1

2 log π

> 1
2 log np = 1

2 log E Y , (22)

because the sum of the error terms εx + εn−x − εn > 0, and x = bn p c ≥ 1 implies

πp̂0 > p. Finally, using Jensen’s inequality, the average code length is bounded above

by

E Lω(Y ) ≤ E 2(1 + b log Y c) ≤ 2 + 2 log E Y ,

and (19) follows when this inequality is combined with (22).

Our proof of Theorem 3 makes use of the following lemma. We consider the con-

ditional entropy of the data given that the sequence is non-trivial, that is, it is not all

1. We state and prove

Lemma 7 Let Xi be i.i.d. with a common monotonic distribution on the positive

integers. Let A = {Xi > 1 for at least one i = 1, . . . n}. Then

H(X1, . . . , Xn|A) ≥ log n

(
1− qn

1

1− pn
1

)
,

where p1 = P{X1 = 1} and q1 = 1− p1.

Proof. To prove the lemma we consider three simple sets that partition the set of all

possible outcomes: (i) the all one sequence (ii) the set of sequences that have no ones

and (iii) the set of sequences with at least one 1, but not all. Formally, we let

Ac = {Xi = 1 for all i = 1, . . . , n}
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and we introduce the set

B = {Xi = 1 for some i and Xj 6= 1 for at some j 6= i}

as well as the set

C = {Xi 6= 1 for all i}.

Note that A = B ∪ C and that Ω = B ∪ C ∪Ac.

Using these sets we partition the entropy of Xn given A:

H(Xn|A) = P (B|A)H(Xn|A,B) + P (C|A)H(Xn|A,C) + h(P (B|A))

≥ P (B|A)H(Xn|A,B)

= P (B|A)H(Xn|B).

Now it is easy to see that P (A) = P (B) + P (C) and that P (A) = 1−P (Ac) = 1− pn
1 .

It thus follows that

P (B|A) =
P (B)
P (A)

=
P (A)− P (C)

P (A)

= 1− P (C)
P (A)

= 1− qn
1

1− pn
1

.

Thus we need only find a lower bound for H(Xn|B). To this end, define Zj = 1{Xj 6=

1}. From the data processing inequality, it follows that

H(Xn|B) ≥ H(Zn
1 |0 <

n∑
j=1

Zj < n).

For any binary n-vector zn
1 , its type is defined in the usual way:

T (zn
1 ) =

n∑
j=1

zj .

That is the type of zn
1 is the number of 1’s. Because Zj is i.i.d. it follows that the

probability of zn
1 depends only on its type. Now let

T (k) = {zn
1 ∈ {0, 1}n : such that T (zn

1 ) = k} .

The cardinality of T (k) is easily seen to be
(n
k

)
. Thus

H(Zn
1 |T (Zn

1 ) = k) = log

(
n

k

)
≥ log n.
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Furthermore we have the simple decomposition:

H(Zn
1 |0 < T (Zn

1 ) < n) =
n−1∑
k=1

P (T (Zn
1 ) = k|0 < T (Zn

1 ) < n)H(Zn
1 |T (Zn

1 ) = k).

Thus it follows that

H(Zn
1 |0 <

n∑
i=1

Zi < n) ≥ log n ,

which in turn implies that

H(Xn|B) ≥ log n.

This completes the proof of the lemma. 2

We can now prove

Theorem 3. There exists a uniquely decodable prefix code for Xn whose length function

L(Xn) satisfies

E L(Xn) ≤ 1 + n HF

[
1 + O

(
log log log n

log log n

)]
.

Proof. First observe that if nHF > log n, then the theorem follows immediately from

Theorem 2. Our proof thus focuses on the low-entropy case n HF ≤ log n. As before,

let pi = P{Xi = i}. If the input data is constant, Xn = 1n, then we simply code a flag

bit. If Xn 6= 1n, we apply the code used in Theorem 2. With the flag bit added, the

expected length of the code is

E L(Xn) = 1 + (1− pn
1 ) E[L(Xn)|Xn 6= 0] .

Observe that

n HF = H(Xn) = P (Xn = 1n)H(Xn|Xn = 1n) + P (Xn 6= 1n)H(Xn|Xn 6= 1n)

= (1− pn
1 )H(Xn|Xn 6= 1) ,

and so

E L(Xn)
H(Xn)

=
1

H(Xn)
+

(1− pn
1 )E[L(Xn)|Xn 6= 0]

H(Xn)

=
1

H(Xn)
+

E [L(Xn)|Xn 6= 0]
H(Xn|Xn 6= 0)

.

Before we can apply Theorem 2, we need to show that the distribution of Xi is

monotonic conditional upon Xn 6= 1n for n > 2. To see that this is the case, suppose
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first that p1 ≤ 1− 1/n. In this case, H(Xi) is minimized when p2 = 1− p1. However,

by definition, the boolean entropy h(1 − p1) > (log n)/n, implying the contradiction

H(Xn) > log n. Thus, p1 > 1− 1/n. Now, it is simple to check that

P (Xi = 1|Xn 6= 1) =
p1(1− pn−1

1 )
1− pn

1

,

and for k > 1

P (Xi = k|Xn 6= 1) =
pk

1− pn
1

.

Thus, the distribution of Xi given that the sequence is non-trivial (Xn 6= 1n) is mono-

tonic iff

p1(1− pn−1
1 ) > p2 ,

or

p1 − p2 > pn
1 . (23)

Since p1 > 1 − 1/n, (23) holds for all n > 2. Thus we can apply Theorem 2. Since

Lemma 7 implies that H(Xn|Xn 6= 1) > log n, our proof is complete. 2
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